These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 32302305)
1. Uptake and speciation of zinc in edible plants grown in smelter contaminated soils. Mishra B; McDonald LM; Roy M; Lanzirotti A; Myneni SCB PLoS One; 2020; 15(4):e0226180. PubMed ID: 32302305 [TBL] [Abstract][Full Text] [Related]
2. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Bidar G; Pruvot C; Garçon G; Verdin A; Shirali P; Douay F Environ Sci Pollut Res Int; 2009 Jan; 16(1):42-53. PubMed ID: 18594892 [TBL] [Abstract][Full Text] [Related]
3. Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Li X; Li Z; Lin CJ; Bi X; Liu J; Feng X; Zhang H; Chen J; Wu T Ecotoxicol Environ Saf; 2018 Oct; 161():99-110. PubMed ID: 29879579 [TBL] [Abstract][Full Text] [Related]
4. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Intawongse M; Dean JR Food Addit Contam; 2006 Jan; 23(1):36-48. PubMed ID: 16393813 [TBL] [Abstract][Full Text] [Related]
5. Elemental uptake by edible herbs and lettuce (Latuca sativa). Pillay V; Jonnalagadda SB J Environ Sci Health B; 2007 May; 42(4):423-8. PubMed ID: 17474022 [TBL] [Abstract][Full Text] [Related]
6. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Shen ZJ; Xu C; Chen YS; Zhang Z Ecotoxicol Environ Saf; 2017 Sep; 143():19-27. PubMed ID: 28494313 [TBL] [Abstract][Full Text] [Related]
7. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
8. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Nabulo G; Oryem-Origa H; Diamond M Environ Res; 2006 May; 101(1):42-52. PubMed ID: 16527265 [TBL] [Abstract][Full Text] [Related]
9. Role of plant growth promoting bacteria in driving speciation gradients across soil-rhizosphere-plant interfaces in zinc-contaminated soils. Adele NC; Ngwenya BT; Heal KV; Mosselmans JFW Environ Pollut; 2021 Jun; 279():116909. PubMed ID: 33744635 [TBL] [Abstract][Full Text] [Related]
10. Phytotoxicity Increase Induced by Zinc Accumulation in Cichorium intybus. Wolf M; Paulino AT Bull Environ Contam Toxicol; 2020 Sep; 105(3):405-410. PubMed ID: 32776280 [TBL] [Abstract][Full Text] [Related]
11. The accumulation and health risk of heavy metals in vegetables around a zinc smelter in northeastern China. Li B; Wang Y; Jiang Y; Li G; Cui J; Wang Y; Zhang H; Wang S; Xu S; Wang R Environ Sci Pollut Res Int; 2016 Dec; 23(24):25114-25126. PubMed ID: 27679998 [TBL] [Abstract][Full Text] [Related]
12. Heavy metal uptake by spinach leaves grown on contaminated soils with lead, mercury, cadmium, and nickel. Chunilall V; Kindness A; Jonnalagadda SB J Environ Sci Health B; 2004 May; 39(3):473-81. PubMed ID: 15186035 [TBL] [Abstract][Full Text] [Related]
13. Zinc and cadmium mapping by NanoSIMS within the root apex after short-term exposure to metal contamination. Ondrasek G; Rengel Z; Clode PL; Kilburn MR; Guagliardo P; Romic D Ecotoxicol Environ Saf; 2019 Apr; 171():571-578. PubMed ID: 30654291 [TBL] [Abstract][Full Text] [Related]
14. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Bi C; Zhou Y; Chen Z; Jia J; Bao X Sci Total Environ; 2018 Apr; 619-620():1349-1357. PubMed ID: 29734612 [TBL] [Abstract][Full Text] [Related]
15. Impact of coal mine dump contaminated soils on elemental uptake by Spinacia oleracea (spinach). Chunilall V; Kindness A; Jonnalagadda SB J Environ Sci Health B; 2006; 41(3):297-307. PubMed ID: 16484089 [TBL] [Abstract][Full Text] [Related]
16. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Sharifan H; Moore J; Ma X Ecotoxicol Environ Saf; 2020 Mar; 191():110177. PubMed ID: 31958627 [TBL] [Abstract][Full Text] [Related]
17. Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Khan AZ; Ding X; Khan S; Ayaz T; Fidel R; Khan MA Chemosphere; 2020 Apr; 244():125543. PubMed ID: 32050340 [TBL] [Abstract][Full Text] [Related]
18. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Almås AR; Lombnaes P; Sogn TA; Mulder J Chemosphere; 2006 Mar; 62(10):1647-55. PubMed ID: 16084561 [TBL] [Abstract][Full Text] [Related]
19. Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants. Břendová K; Zemanová V; Pavlíková D; Tlustoš P J Environ Manage; 2016 Oct; 181():637-645. PubMed ID: 27544477 [TBL] [Abstract][Full Text] [Related]
20. Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Xiao R; Shen F; Du J; Li R; Lahori AH; Zhang Z Ecotoxicol Environ Saf; 2018 Oct; 162():178-183. PubMed ID: 29990729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]