These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32302474)

  • 1. Benchmarking Correlated Methods for Frequency-Dependent Polarizabilities: Aromatic Molecules with the CC3, CCSD, CC2, SOPPA, SOPPA(CC2), and SOPPA(CCSD) Methods.
    Jørgensen MW; Faber R; Ligabue A; Sauer SPA
    J Chem Theory Comput; 2020 May; 16(5):3006-3018. PubMed ID: 32302474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking doubles-corrected random-phase approximation methods for frequency dependent polarizabilities: Aromatic molecules calculated at the RPA, HRPA, RPA(D), HRPA(D), and SOPPA levels.
    Jørgensen MW; Sauer SPA
    J Chem Phys; 2020 Jun; 152(23):234101. PubMed ID: 32571042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking Correlated Methods for Static and Dynamic Polarizabilities: The T145 Data Set Evaluated with RPA, RPA(D), HRPA, HRPA(D), SOPPA, SOPPA(CC2), SOPPA(CCSD), CC2, and CCSD.
    Beizaei N; Sauer SPA
    J Phys Chem A; 2021 May; 125(17):3785-3792. PubMed ID: 33899480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking NMR indirect nuclear spin-spin coupling constants: SOPPA, SOPPA(CC2), and SOPPA(CCSD) versus CCSD.
    Kjaer H; Sauer SP; Kongsted J
    J Chem Phys; 2010 Oct; 133(14):144106. PubMed ID: 20949986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities.
    Hickey AL; Rowley CN
    J Phys Chem A; 2014 May; 118(20):3678-87. PubMed ID: 24796376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonempirical calculations of the one-bond (29)Si-(13)C spin-spin coupling constants taking into account relativistic and solvent corrections.
    Rusakova IL; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Aug; 52(8):413-21. PubMed ID: 24796525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From CCSD(T)/aug-cc-pVTZ-J to CCSD(T) complete basis set limit isotropic nuclear magnetic shieldings via affordable DFT/CBS calculations.
    Kupka T; Stachów M; Nieradka M; Kaminsky J; Pluta T; Sauer SP
    Magn Reson Chem; 2011 May; 49(5):231-6. PubMed ID: 21387405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking two-photon absorption strengths of rhodopsin chromophore models with CC3 and CCSD methodologies: An assessment of popular density functional approximations.
    Sirimatayanant S; Andruniów T
    J Chem Phys; 2023 Mar; 158(9):094106. PubMed ID: 36889953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reference Energies for Intramolecular Charge-Transfer Excitations.
    Loos PF; Comin M; Blase X; Jacquemin D
    J Chem Theory Comput; 2021 Jun; 17(6):3666-3686. PubMed ID: 33955742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Property-Oriented Basis Sets for the Computation of Electronic and Nuclear Relaxation Hyperpolarizabilities.
    Zaleśny R; Baranowska-Łączkowska A; Medveď M; Luis JM
    J Chem Theory Comput; 2015 Sep; 11(9):4119-28. PubMed ID: 26575907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Rotation from Coupled Cluster and Density Functional Theory: The Role of Basis Set Convergence.
    Haghdani S; Åstrand PO; Koch H
    J Chem Theory Comput; 2016 Feb; 12(2):535-48. PubMed ID: 26672621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basis set dependence of higher-order correlation effects in π-type interactions.
    Carrell EJ; Thorne CM; Tschumper GS
    J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational formulation of perturbative explicitly-correlated coupled-cluster methods.
    Torheyden M; Valeev EF
    Phys Chem Chem Phys; 2008 Jun; 10(23):3410-20. PubMed ID: 18535724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3.
    Schreiber M; Silva-Junior MR; Sauer SP; Thiel W
    J Chem Phys; 2008 Apr; 128(13):134110. PubMed ID: 18397056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory.
    Warden CE; Smith DGA; Burns LA; Bozkaya U; Sherrill CD
    J Chem Phys; 2020 Mar; 152(12):124109. PubMed ID: 32241148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small and efficient basis sets for the evaluation of accurate interaction energies: aromatic molecule-argon ground-state intermolecular potentials and rovibrational states.
    Cybulski H; Baranowska-Łączkowska A; Henriksen C; Fernández B
    J Phys Chem A; 2014 Nov; 118(44):10288-97. PubMed ID: 25317989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks.
    Loos PF; Scemama A; Blondel A; Garniron Y; Caffarel M; Jacquemin D
    J Chem Theory Comput; 2018 Aug; 14(8):4360-4379. PubMed ID: 29966098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of Property-Optimized Basis Sets for Optical Rotation with Coupled Cluster Theory.
    Howard JC; Sowndarya S V S; Ansari IM; Mach TJ; Baranowska-Łączkowska A; Crawford TD
    J Phys Chem A; 2018 Jul; 122(28):5962-5969. PubMed ID: 29923720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarks for 0-0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data.
    Winter NO; Graf NK; Leutwyler S; Hättig C
    Phys Chem Chem Phys; 2013 May; 15(18):6623-30. PubMed ID: 23111753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.