These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Alemasova EE; Lavrik OI Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430551 [TBL] [Abstract][Full Text] [Related]
5. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities. Khadka P; Hsu JK; Veith S; Tadokoro T; Shamanna RA; Mangerich A; Croteau DL; Bohr VA Mol Cell Biol; 2015 Dec; 35(23):3974-89. PubMed ID: 26391948 [TBL] [Abstract][Full Text] [Related]
6. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Alemasova EE; Lavrik OI Nucleic Acids Res; 2022 Oct; 50(19):10817-10838. PubMed ID: 36243979 [TBL] [Abstract][Full Text] [Related]
8. Cell Cycle Resolved Measurements of Poly(ADP-Ribose) Formation and DNA Damage Signaling by Quantitative Image-Based Cytometry. Michelena J; Altmeyer M Methods Mol Biol; 2017; 1608():57-68. PubMed ID: 28695503 [TBL] [Abstract][Full Text] [Related]
9. The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Abd Elmageed ZY; Naura AS; Errami Y; Zerfaoui M Cell Signal; 2012 Jan; 24(1):1-8. PubMed ID: 21840394 [TBL] [Abstract][Full Text] [Related]
10. Mammalian N1-adenosine PARylation is a reversible DNA modification. Musheev MU; Schomacher L; Basu A; Han D; Krebs L; Scholz C; Niehrs C Nat Commun; 2022 Oct; 13(1):6138. PubMed ID: 36253381 [TBL] [Abstract][Full Text] [Related]
11. Inputs and outputs of poly(ADP-ribosyl)ation: Relevance to oxidative stress. Hegedűs C; Virág L Redox Biol; 2014; 2():978-82. PubMed ID: 25460733 [TBL] [Abstract][Full Text] [Related]
12. Functional Role of ADP-Ribosyl-Acceptor Hydrolase 3 in poly(ADP-Ribose) Polymerase-1 Response to Oxidative Stress. Mashimo M; Moss J Curr Protein Pept Sci; 2016; 17(7):633-640. PubMed ID: 27090906 [TBL] [Abstract][Full Text] [Related]
13. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro. Lin KY; Huang D; Kraus WL Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence-Based Analyses of Poly(ADP-Ribose) Length by Gel Electrophoresis, High-Performance Liquid Chromatography, and Capillary Electrophoresis. Badiee M; Boutonnet A; Phan D; Leung AKL Methods Mol Biol; 2023; 2609():3-21. PubMed ID: 36515826 [TBL] [Abstract][Full Text] [Related]
15. Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Reber JM; Mangerich A Nucleic Acids Res; 2021 Sep; 49(15):8432-8448. PubMed ID: 34302489 [TBL] [Abstract][Full Text] [Related]
16. PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Grimaldi G; Catara G; Palazzo L; Corteggio A; Valente C; Corda D Biochem Pharmacol; 2019 Sep; 167():64-75. PubMed ID: 31102582 [TBL] [Abstract][Full Text] [Related]
17. Switch-like compaction of poly(ADP-ribose) upon cation binding. Badiee M; Kenet AL; Ganser LR; Paul T; Myong S; Leung AKL Proc Natl Acad Sci U S A; 2023 May; 120(19):e2215068120. PubMed ID: 37126687 [TBL] [Abstract][Full Text] [Related]
18. Quantitation of Poly(ADP-Ribose) by Isotope Dilution Mass Spectrometry. Zubel T; Martello R; Bürkle A; Mangerich A Methods Mol Biol; 2017; 1608():3-18. PubMed ID: 28695499 [TBL] [Abstract][Full Text] [Related]
19. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis. Li M; Bian C; Yu X Cell Cycle; 2014; 13(18):2944-51. PubMed ID: 25486481 [TBL] [Abstract][Full Text] [Related]
20. Detecting Poly (ADP-Ribose) In Vitro and in Cells Using PAR Trackers. Challa S; Whitaker AL; Kraus WL Methods Mol Biol; 2023; 2609():75-90. PubMed ID: 36515830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]