These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32302688)

  • 1. Ross-Macdonald models: Which one should we use?
    Simoy MI; Aparicio JP
    Acta Trop; 2020 Jul; 207():105452. PubMed ID: 32302688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior.
    Simoy MI; Aparicio JP
    Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximation methods for analyzing multiscale stochastic vector-borne epidemic models.
    Liu X; Mubayi A; Reinhold D; Zhu L
    Math Biosci; 2019 Mar; 309():42-65. PubMed ID: 30658089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical analysis of a mean-field vector-borne diseases model on complex networks: An edge based compartmental approach.
    Wang X; Yang J
    Chaos; 2020 Jan; 30(1):013103. PubMed ID: 32013474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of vector modeling in a minimalistic epidemic model.
    Rashkov P; Venturino E; Aguiar M; Stollenwerk N; W Kooi B
    Math Biosci Eng; 2019 May; 16(5):4314-4338. PubMed ID: 31499664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens.
    Smith DL; Battle KE; Hay SI; Barker CM; Scott TW; McKenzie FE
    PLoS Pathog; 2012; 8(4):e1002588. PubMed ID: 22496640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and Hopf Bifurcation of a Vector-Borne Disease Model with Saturated Infection Rate and Reinfection.
    Hu Z; Yin S; Wang H
    Comput Math Methods Med; 2019; 2019():1352698. PubMed ID: 31341509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The basic reproduction number of vector-borne plant virus epidemics.
    Van den Bosch F; Jeger MJ
    Virus Res; 2017 Sep; 241():196-202. PubMed ID: 28642061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents.
    Caldwell JM; LaBeaud AD; Lambin EF; Stewart-Ibarra AM; Ndenga BA; Mutuku FM; Krystosik AR; Ayala EB; Anyamba A; Borbor-Cordova MJ; Damoah R; Grossi-Soyster EN; Heras FH; Ngugi HN; Ryan SJ; Shah MM; Sippy R; Mordecai EA
    Nat Commun; 2021 Feb; 12(1):1233. PubMed ID: 33623008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Scale Analysis and Parameter Fitting for Vector-Borne Diseases with Spatial Dynamics.
    Sartori L; Pereira M; Oliva S
    Bull Math Biol; 2022 Sep; 84(11):124. PubMed ID: 36121515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ross-Macdonald model in a patchy environment.
    Auger P; Kouokam E; Sallet G; Tchuente M; Tsanou B
    Math Biosci; 2008 Dec; 216(2):123-31. PubMed ID: 18805432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks.
    Zhao R; Liu Q; Zhang H
    Math Biosci Eng; 2021 Apr; 18(4):3073-3091. PubMed ID: 34198376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods.
    Fowler AC; Hollingsworth TD
    Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector-borne diseases models with residence times - A Lagrangian perspective.
    Bichara D; Castillo-Chavez C
    Math Biosci; 2016 Nov; 281():128-138. PubMed ID: 27622812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing potential countermeasures against the dengue epidemic in non-tropical urban cities.
    Masui H; Kakitani I; Ujiyama S; Hashidate K; Shiono M; Kudo K
    Theor Biol Med Model; 2016 Apr; 13():12. PubMed ID: 27072122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vector-borne disease models with Lagrangian approach.
    Gao D; Cao L
    J Math Biol; 2024 Jan; 88(2):22. PubMed ID: 38294559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.