BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32303006)

  • 1. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX; Luo ZY; Mo DC; Lyu SS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH
    Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles study of the optical and thermoelectric properties of tetragonal-silicene.
    Mondal NS; Nath S; Jana D; Ghosh NK
    Phys Chem Chem Phys; 2021 May; 23(20):11863-11875. PubMed ID: 33988639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of thermoelectric performance in graphenylene nanoribbons by suppressing phonon thermal conductance: the role of phonon local resonance.
    Wu CW; Zhou WX; Xie G; Chen XK; Wu D; Fan ZQ
    Nanotechnology; 2022 Feb; 33(21):. PubMed ID: 35130521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Theoretical Study of Armchair Antimonene Nanoribbons in the Presence of Uniaxial Strain Based on First-Principles Calculations.
    Yazdanpanah Goharrizi A; Barzoki AM; Selberherr S; Filipovic L
    ACS Appl Electron Mater; 2023 Aug; 5(8):4514-4522. PubMed ID: 37637974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoelectric properties of armchair and zigzag silicene nanoribbons.
    Pan L; Liu HJ; Tan XJ; Lv HY; Shi J; Tang XF; Zheng G
    Phys Chem Chem Phys; 2012 Oct; 14(39):13588-93. PubMed ID: 22965156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric properties of doped graphene nanoribbons: density functional theory calculations and electrical transport.
    Rahmati E; Bafekry A; Faraji M; Gogva D; Nguyen CV; Ghergherehchi M
    RSC Adv; 2022 Feb; 12(10):6174-6180. PubMed ID: 35424535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chemical-bond-driven edge reconstruction of Sb nanoribbons and their thermoelectric properties from first-principles calculations.
    Shen JN; Fang Y; Lin ZX; Xie TZ; Zhang YF; Wu LM
    RSC Adv; 2019 Jan; 9(2):1047-1054. PubMed ID: 35517602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations.
    Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L
    Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials.
    Liu YY; Zeng YJ; Jia PZ; Cao XH; Jiang X; Chen KQ
    J Phys Condens Matter; 2018 Jul; 30(27):275701. PubMed ID: 29799436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton-dominated optical response of ultra-narrow graphene nanoribbons.
    Denk R; Hohage M; Zeppenfeld P; Cai J; Pignedoli CA; Söde H; Fasel R; Feng X; Müllen K; Wang S; Prezzi D; Ferretti A; Ruini A; Molinari E; Ruffieux P
    Nat Commun; 2014 Jul; 5():4253. PubMed ID: 25001405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of spin-orbit coupling on transmission and absorption of electromagnetic waves in strained armchair phosphorene nanoribbons.
    Rezania H; Abdi M; Nourian E; Astinchap B
    RSC Adv; 2023 Jul; 13(32):22287-22301. PubMed ID: 37492510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The properties of BiSb nanoribbons from first-principles calculations.
    Lv HY; Liu HJ; Tan XJ; Pan L; Wen YW; Shi J; Tang XF
    Nanoscale; 2012 Jan; 4(2):511-7. PubMed ID: 22101571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons.
    Ajeel FN; Ahmed AB
    J Mol Model; 2023 Apr; 29(5):145. PubMed ID: 37067639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical characterization of thermal transport in hexagonal tungsten disulfide (WS
    Ghosh A; Ahmed SS; Shawkat MSA; Subrina S
    Nanotechnology; 2024 Jun; ():. PubMed ID: 38906122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study of heat transport properties of graphene nanoribbons.
    Tan ZW; Wang JS; Gan CK
    Nano Lett; 2011 Jan; 11(1):214-9. PubMed ID: 21158401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.