These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326 [TBL] [Abstract][Full Text] [Related]
3. WSe2 nanoribbons: new high-performance thermoelectric materials. Chen KX; Luo ZY; Mo DC; Lyu SS Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307 [TBL] [Abstract][Full Text] [Related]
4. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect. Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514 [TBL] [Abstract][Full Text] [Related]
5. First-principles study of the optical and thermoelectric properties of tetragonal-silicene. Mondal NS; Nath S; Jana D; Ghosh NK Phys Chem Chem Phys; 2021 May; 23(20):11863-11875. PubMed ID: 33988639 [TBL] [Abstract][Full Text] [Related]
6. Investigation of Electric Field Tunable Optical and Electrical Characteristics of Zigzag and Armchair Graphene Nanoribbons: An Ab Initio Approach. Emir R; Tuncsiper C; Surekci Yamacli D; Yamacli S; Tekin SA Nanomaterials (Basel); 2024 Sep; 14(17):. PubMed ID: 39269109 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of thermoelectric performance in graphenylene nanoribbons by suppressing phonon thermal conductance: the role of phonon local resonance. Wu CW; Zhou WX; Xie G; Chen XK; Wu D; Fan ZQ Nanotechnology; 2022 Feb; 33(21):. PubMed ID: 35130521 [TBL] [Abstract][Full Text] [Related]
8. A Theoretical Study of Armchair Antimonene Nanoribbons in the Presence of Uniaxial Strain Based on First-Principles Calculations. Yazdanpanah Goharrizi A; Barzoki AM; Selberherr S; Filipovic L ACS Appl Electron Mater; 2023 Aug; 5(8):4514-4522. PubMed ID: 37637974 [TBL] [Abstract][Full Text] [Related]
9. Thermoelectric properties of armchair and zigzag silicene nanoribbons. Pan L; Liu HJ; Tan XJ; Lv HY; Shi J; Tang XF; Zheng G Phys Chem Chem Phys; 2012 Oct; 14(39):13588-93. PubMed ID: 22965156 [TBL] [Abstract][Full Text] [Related]
10. Thermoelectric properties of doped graphene nanoribbons: density functional theory calculations and electrical transport. Rahmati E; Bafekry A; Faraji M; Gogva D; Nguyen CV; Ghergherehchi M RSC Adv; 2022 Feb; 12(10):6174-6180. PubMed ID: 35424535 [TBL] [Abstract][Full Text] [Related]
11. A chemical-bond-driven edge reconstruction of Sb nanoribbons and their thermoelectric properties from first-principles calculations. Shen JN; Fang Y; Lin ZX; Xie TZ; Zhang YF; Wu LM RSC Adv; 2019 Jan; 9(2):1047-1054. PubMed ID: 35517602 [TBL] [Abstract][Full Text] [Related]
12. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
13. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations. Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812 [TBL] [Abstract][Full Text] [Related]
14. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials. Liu YY; Zeng YJ; Jia PZ; Cao XH; Jiang X; Chen KQ J Phys Condens Matter; 2018 Jul; 30(27):275701. PubMed ID: 29799436 [TBL] [Abstract][Full Text] [Related]
15. Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Denk R; Hohage M; Zeppenfeld P; Cai J; Pignedoli CA; Söde H; Fasel R; Feng X; Müllen K; Wang S; Prezzi D; Ferretti A; Ruini A; Molinari E; Ruffieux P Nat Commun; 2014 Jul; 5():4253. PubMed ID: 25001405 [TBL] [Abstract][Full Text] [Related]
16. Electronic Structure and I-V Characteristics of InSe Nanoribbons. Yao AL; Wang XF; Liu YS; Sun YN Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093 [TBL] [Abstract][Full Text] [Related]
17. Numerical characterization of thermal transport in hexagonal tungsten disulfide (WS Ghosh A; Shadman Ahmed S; Shawkat MSA; Subrina S Nanotechnology; 2024 Jul; 35(39):. PubMed ID: 38906122 [TBL] [Abstract][Full Text] [Related]
18. Effects of spin-orbit coupling on transmission and absorption of electromagnetic waves in strained armchair phosphorene nanoribbons. Rezania H; Abdi M; Nourian E; Astinchap B RSC Adv; 2023 Jul; 13(32):22287-22301. PubMed ID: 37492510 [TBL] [Abstract][Full Text] [Related]
19. The properties of BiSb nanoribbons from first-principles calculations. Lv HY; Liu HJ; Tan XJ; Pan L; Wen YW; Shi J; Tang XF Nanoscale; 2012 Jan; 4(2):511-7. PubMed ID: 22101571 [TBL] [Abstract][Full Text] [Related]
20. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons. Ajeel FN; Ahmed AB J Mol Model; 2023 Apr; 29(5):145. PubMed ID: 37067639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]