BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32303013)

  • 1. Monte Carlo track-structure for the radionuclide Copper-64: characterization of S-values, nanodosimetry and quantification of direct damage to DNA.
    Carrasco-Hernández J; Ramos-Méndez J; Faddegon B; Jalilian AR; Moranchel M; Ávila-Rodríguez MA
    Phys Med Biol; 2020 Jul; 65(15):155005. PubMed ID: 32303013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo N-Particle (MCNP) Modeling of the Cellular Dosimetry of 64Cu: Comparison with MIRDcell S Values and Implications for Studies of Its Cytotoxic Effects.
    Cai Z; Kwon YL; Reilly RM
    J Nucl Med; 2017 Feb; 58(2):339-345. PubMed ID: 27660146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular lethal damage of
    Carrasco-Hernandez J; Ramos-Méndez J; Padilla-Rodal E; Avila-Rodriguez MA
    Front Med (Lausanne); 2023; 10():1253746. PubMed ID: 37841004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nanodosimetric model of radiation-induced clustered DNA damage yields.
    Garty G; Schulte R; Shchemelinin S; Leloup C; Assaf G; Breskin A; Chechik R; Bashkirov V; Milligan J; Grosswendt B
    Phys Med Biol; 2010 Feb; 55(3):761-81. PubMed ID: 20071772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of
    Piroozfar B; Raisali G; Alirezapour B; Mirzaii M
    Int J Radiat Biol; 2018 Apr; 94(4):385-393. PubMed ID: 29432072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation.
    Liu R; Zhao T; Zhao X; Reynoso FJ
    Med Phys; 2019 Nov; 46(11):5314-5325. PubMed ID: 31505039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the geometrical detail in the description of DNA and the scoring method of ionization clustering on nanodosimetric parameters of track structure: a Monte Carlo study using Geant4-DNA.
    Bueno M; Schulte R; Meylan S; Villagrasa C
    Phys Med Biol; 2015 Nov; 60(21):8583-99. PubMed ID: 26501434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA.
    Rezaee M; Hunting DJ; Sanche L
    Med Phys; 2014 Jul; 41(7):072502. PubMed ID: 24989405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiobiological impact of gadolinium neutron capture from proton therapy and alternative neutron sources using TOPAS-nBio.
    Van Delinder KW; Khan R; Gräfe JL
    Med Phys; 2021 Jul; 48(7):4004-4016. PubMed ID: 33959981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TOPAS-nBio simulation of temperature-dependent indirect DNA strand break yields.
    Ramos-Méndez J; García-García O; Domínguez-Kondo J; LaVerne JA; Schuemann J; Moreno-Barbosa E; Faddegon B
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35714599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cell-by-cell Monte Carlo simulation for assessing radiation-induced DNA double strand breaks.
    Lee BH; Wang CC
    Phys Med; 2019 Jun; 62():140-151. PubMed ID: 31153394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculated strand breaks from (125)I in coiled DNA.
    Goorley T; Terrissol M; Nikjoo H
    Int J Radiat Biol; 2008 Dec; 84(12):1050-6. PubMed ID: 19061129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation-induced double-strand breaks by internal ex vivo irradiation of lymphocytes: Validation of a Monte Carlo simulation model using GATE and Geant4-DNA.
    Salas-Ramirez M; Maigne L; Fois G; Scherthan H; Lassmann M; Eberlein U
    Z Med Phys; 2023 Aug; ():. PubMed ID: 37599196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to explain the sensitivity of DNA double-strand breaks yield to
    Alcocer Ávila ME; Hindié E; Champion C
    Int J Radiat Biol; 2023; 99(1):103-108. PubMed ID: 35259042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility study of macroscopic simulations of nanodosimetric parameters for proton therapy.
    Vasi F; Schmidli K; Hälg RA; Schneider U
    Med Phys; 2020 Nov; 47(11):5872-5881. PubMed ID: 32285455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the consistency of Monte Carlo track structure DNA damage simulations.
    Pater P; Seuntjens J; El Naqa I; Bernal MA
    Med Phys; 2014 Dec; 41(12):121708. PubMed ID: 25471955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.
    Wu J; Liu YL; Chang SJ; Chao MM; Tsai SY; Huang DE
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):119-24. PubMed ID: 22923242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculations of dose point kernels of
    Tse J; Geoghegan S
    Med Phys; 2019 May; 46(5):2422-2429. PubMed ID: 30822361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of energy deposition and DNA damage using TOPAS-nBio.
    Wu J; Xie Y; Wang L; Wang Y
    Phys Med Biol; 2020 Nov; 65(22):225007. PubMed ID: 33179608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra.
    Lazarakis P; Bug MU; Gargioni E; Guatelli S; Rabus H; Rosenfeld AB
    Phys Med Biol; 2012 Mar; 57(5):1231-50. PubMed ID: 22330641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.