BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32303284)

  • 1. The Role of Tubule-Interstitial Crosstalk in Renal Injury and Recovery.
    Schiessl IM
    Semin Nephrol; 2020 Mar; 40(2):216-231. PubMed ID: 32303284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cellular and signalling alterations conducted by TGF-β contributing to renal fibrosis.
    Vega G; Alarcón S; San Martín R
    Cytokine; 2016 Dec; 88():115-125. PubMed ID: 27599257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubule-derived lactate is required for fibroblast activation in acute kidney injury.
    Shen Y; Jiang L; Wen P; Ye Y; Zhang Y; Ding H; Luo J; Xu L; Zen K; Zhou Y; Yang J
    Am J Physiol Renal Physiol; 2020 Mar; 318(3):F689-F701. PubMed ID: 31928224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation.
    Bijkerk R; de Bruin RG; van Solingen C; van Gils JM; Duijs JM; van der Veer EP; Rabelink TJ; Humphreys BD; van Zonneveld AJ
    Kidney Int; 2016 Jun; 89(6):1268-80. PubMed ID: 27165825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication.
    Zhou D; Tan RJ; Zhou L; Li Y; Liu Y
    Sci Rep; 2013; 3():1878. PubMed ID: 23698793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal tubule injury: a driving force toward chronic kidney disease.
    Liu BC; Tang TT; Lv LL; Lan HY
    Kidney Int; 2018 Mar; 93(3):568-579. PubMed ID: 29361307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis.
    Faulkner JL; Szcykalski LM; Springer F; Barnes JL
    Am J Pathol; 2005 Nov; 167(5):1193-205. PubMed ID: 16251405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation-related signalling pathways.
    Zhang X; Lu H; Xie S; Wu C; Guo Y; Xiao Y; Zheng S; Zhu H; Zhang Y; Bai Y
    Br J Pharmacol; 2019 Dec; 176(24):4745-4759. PubMed ID: 31454852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myofibroblasts acquire retinoic acid-producing ability during fibroblast-to-myofibroblast transition following kidney injury.
    Nakamura J; Sato Y; Kitai Y; Wajima S; Yamamoto S; Oguchi A; Yamada R; Kaneko K; Kondo M; Uchino E; Tsuchida J; Hirano K; Sharma K; Kohno K; Yanagita M
    Kidney Int; 2019 Mar; 95(3):526-539. PubMed ID: 30661714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorogenic Acid Attenuates Kidney Ischemic/Reperfusion Injury via Reducing Inflammation, Tubular Injury, and Myofibroblast Formation.
    Arfian N; Wahyudi DAP; Zulfatina IB; Citta AN; Anggorowati N; Multazam A; Romi MM; Sari DCR
    Biomed Res Int; 2019; 2019():5423703. PubMed ID: 31662982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin filaments in human renal tubulo-interstitial fibrosis: significance for the concept of epithelial-myofibroblast transformation.
    Ru Y; Eyden B; Curry A; McWilliam LJ; Coyne JD
    J Submicrosc Cytol Pathol; 2003 Jul; 35(3):221-33. PubMed ID: 14690170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression Profiling of Fibroblasts in Chronic and Acute Disease Models Reveals Novel Pathways in Kidney Fibrosis.
    Higashi AY; Aronow BJ; Dressler GR
    J Am Soc Nephrol; 2019 Jan; 30(1):80-94. PubMed ID: 30545984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species differently regulate renal tubular epithelial and interstitial cell proliferation after ischemia and reperfusion injury.
    Kim J; Jung KJ; Park KM
    Am J Physiol Renal Physiol; 2010 May; 298(5):F1118-29. PubMed ID: 20164154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of mesenchymal stem cells in kidney injury and fibrosis.
    Kuppe C; Kramann R
    Curr Opin Nephrol Hypertens; 2016 Jul; 25(4):372-7. PubMed ID: 27191350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tubular engraftment and myofibroblast differentiation of recipient-derived cells after experimental kidney transplantation.
    Broekema M; Harmsen MC; Koerts JA; van Kooten TG; Navis G; van Luyn MJ; Popa ER
    Transplantation; 2007 Oct; 84(8):1003-11. PubMed ID: 17989606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.
    Zhou D; Fu H; Zhang L; Zhang K; Min Y; Xiao L; Lin L; Bastacky SI; Liu Y
    J Am Soc Nephrol; 2017 Aug; 28(8):2322-2336. PubMed ID: 28336721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epithelial and interstitial Notch1 activity contributes to the myofibroblastic phenotype and fibrosis.
    Hong W; Zhang G; Lu H; Guo Y; Zheng S; Zhu H; Xiao Y; Papa APD; Wu C; Sun L; Chen B; Bai Y
    Cell Commun Signal; 2019 Nov; 17(1):145. PubMed ID: 31718671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular insights into renal interstitial fibrosis.
    Eddy AA
    J Am Soc Nephrol; 1996 Dec; 7(12):2495-508. PubMed ID: 8989727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of neutrophil gelatinase-associated lipocalin and osteopontin in renal tubular regeneration and interstitial fibrosis after cisplatin-induced renal failure.
    Kashiwagi E; Tonomura Y; Kondo C; Masuno K; Fujisawa K; Tsuchiya N; Matsushima S; Torii M; Takasu N; Izawa T; Kuwamura M; Yamate J
    Exp Toxicol Pathol; 2014 Sep; 66(7):301-11. PubMed ID: 24912749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease.
    Kramann R; DiRocco DP; Humphreys BD
    J Pathol; 2013 Nov; 231(3):273-89. PubMed ID: 24006178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.