BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32303285)

  • 1. High-Density Lipoproteins and Acute Kidney Injury.
    Smith LE
    Semin Nephrol; 2020 Mar; 40(2):232-242. PubMed ID: 32303285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Density Lipoprotein Cholesterol Concentration and Acute Kidney Injury After Cardiac Surgery.
    Smith LE; Smith DK; Blume JD; Linton MF; Billings FT
    J Am Heart Assoc; 2017 Dec; 6(12):. PubMed ID: 29223955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifaced Roles of HDL in Sepsis and SARS-CoV-2 Infection: Renal Implications.
    Stasi A; Franzin R; Fiorentino M; Squiccimarro E; Castellano G; Gesualdo L
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34205975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal endothelial injury and microvascular dysfunction in acute kidney injury.
    Verma SK; Molitoris BA
    Semin Nephrol; 2015 Jan; 35(1):96-107. PubMed ID: 25795503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sepsis-associated AKI: epithelial cell dysfunction.
    Emlet DR; Shaw AD; Kellum JA
    Semin Nephrol; 2015 Jan; 35(1):85-95. PubMed ID: 25795502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low levels of high-density lipoproteins are associated with acute kidney injury following revascularization for chronic limb ischemia.
    Arora P; Davari-Farid S; Gannon MP; Lohr JW; Dosluoglu HH; Nader ND
    Ren Fail; 2013 Jul; 35(6):838-44. PubMed ID: 23738505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury.
    Zhao WY; Zhang L; Sui MX; Zhu YH; Zeng L
    Sci Rep; 2016 Sep; 6():33201. PubMed ID: 27620507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of erythropoietin receptor activity on angiogenesis, tubular injury, and fibrosis in acute kidney injury: a "U-shaped" relationship.
    Shi M; Flores B; Li P; Gillings N; McMillan KL; Ye J; Huang LJ; Sidhu SS; Zhong YP; Grompe MT; Streeter PR; Moe OW; Hu MC
    Am J Physiol Renal Physiol; 2018 Apr; 314(4):F501-F516. PubMed ID: 29187371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells.
    Al-Harbi NO; Nadeem A; Ahmad SF; Alotaibi MR; AlAsmari AF; Alanazi WA; Al-Harbi MM; El-Sherbeeny AM; Ibrahim KE
    Int Immunopharmacol; 2018 May; 58():24-31. PubMed ID: 29544198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation.
    Ferrè S; Deng Y; Huen SC; Lu CY; Scherer PE; Igarashi P; Moe OW
    Kidney Int; 2019 Dec; 96(6):1359-1373. PubMed ID: 31601454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-year follow-up of patients with septic shock presenting with low HDL: the effect upon acute kidney injury, death and estimated glomerular filtration rate.
    Roveran Genga K; Lo C; Cirstea M; Zhou G; Walley KR; Russell JA; Levin A; Boyd JH
    J Intern Med; 2017 May; 281(5):518-529. PubMed ID: 28317295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mangiferin attenuate sepsis-induced acute kidney injury via antioxidant and anti-inflammatory effects.
    He L; Peng X; Zhu J; Chen X; Liu H; Tang C; Dong Z; Liu F; Peng Y
    Am J Nephrol; 2014; 40(5):441-50. PubMed ID: 25427663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury.
    Anderberg SB; Luther T; Frithiof R
    Acta Physiol (Oxf); 2017 Mar; 219(3):573-588. PubMed ID: 27602552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of contrast media on renal function and outcomes in patients with sepsis-associated acute kidney injury: a propensity-matched cohort study.
    Goto Y; Koyama K; Katayama S; Tonai K; Shima J; Koinuma T; Nunomiya S
    Crit Care; 2019 Jul; 23(1):249. PubMed ID: 31288864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation.
    Lin Q; Li S; Jiang N; Shao X; Zhang M; Jin H; Zhang Z; Shen J; Zhou Y; Zhou W; Gu L; Lu R; Ni Z
    Redox Biol; 2019 Sep; 26():101254. PubMed ID: 31229841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sepsis and inflammation: impact on acute kidney injury.
    Dirkes S
    Nephrol Nurs J; 2013; 40(2):125-32; quiz 133. PubMed ID: 23767336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute kidney injury in the cancer patient.
    Campbell GA; Hu D; Okusa MD
    Adv Chronic Kidney Dis; 2014 Jan; 21(1):64-71. PubMed ID: 24359988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury.
    Wang X; Zheng X; Zhang J; Zhao S; Wang Z; Wang F; Shang W; Barasch J; Qiu A
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F1042-F1057. PubMed ID: 29923765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microcirculation of the septic kidney.
    Zafrani L; Payen D; Azoulay E; Ince C
    Semin Nephrol; 2015 Jan; 35(1):75-84. PubMed ID: 25795501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statins for the prevention of contrast-induced acute kidney injury.
    Ball T; McCullough PA
    Nephron Clin Pract; 2014; 127(1-4):165-71. PubMed ID: 25343843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.