These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 3230365)
1. Global stability results for a generalized Lotka-Volterra system with distributed delays. Applications to predator-prey and to epidemic systems. Beretta E; Capasso V; Rinaldi F J Math Biol; 1988; 26(6):661-88. PubMed ID: 3230365 [TBL] [Abstract][Full Text] [Related]
2. Predator prey interactions with time delays. Cushing JM J Math Biol; 1976 Nov; 3(3-4):369-80. PubMed ID: 1035612 [TBL] [Abstract][Full Text] [Related]
3. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays. Meng X; Chen L J Theor Biol; 2006 Dec; 243(4):562-74. PubMed ID: 16934297 [TBL] [Abstract][Full Text] [Related]
4. Asymptotic stability of a modified Lotka-Volterra model with small immigrations. Tahara T; Gavina MKA; Kawano T; Tubay JM; Rabajante JF; Ito H; Morita S; Ichinose G; Okabe T; Togashi T; Tainaka KI; Shimizu A; Nagatani T; Yoshimura J Sci Rep; 2018 May; 8(1):7029. PubMed ID: 29728625 [TBL] [Abstract][Full Text] [Related]
5. Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments. Fan M; Wang K; Jiang D Math Biosci; 1999 Aug; 160(1):47-61. PubMed ID: 10465931 [TBL] [Abstract][Full Text] [Related]
6. Lotka-Volterra system with Volterra multiplier. Gürlebeck K; Ji X Adv Exp Med Biol; 2011; 696():647-55. PubMed ID: 21431606 [TBL] [Abstract][Full Text] [Related]
7. The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem. Milgram A J Theor Biol; 2011 Feb; 271(1):157-8. PubMed ID: 21145326 [TBL] [Abstract][Full Text] [Related]
8. Effect of delay in a Lotka-Volterra type predator-prey model with a transmissible disease in the predator species. Haque M; Sarwardi S; Preston S; Venturino E Math Biosci; 2011 Nov; 234(1):47-57. PubMed ID: 21784082 [TBL] [Abstract][Full Text] [Related]
9. Dispersal delays, predator-prey stability, and the paradox of enrichment. Klepac P; Neubert MG; van den Driessche P Theor Popul Biol; 2007 Jun; 71(4):436-44. PubMed ID: 17433392 [TBL] [Abstract][Full Text] [Related]
10. A solution to the accelerated-predator-satiety Lotka-Volterra predator-prey problem using Boubaker polynomial expansion scheme. Dubey B; Zhao TG; Jonsson M; Rahmanov H J Theor Biol; 2010 May; 264(1):154-60. PubMed ID: 20109470 [TBL] [Abstract][Full Text] [Related]
11. The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator. Nie L; Teng Z; Hu L; Peng J Biosystems; 2009 Nov; 98(2):67-72. PubMed ID: 19523503 [TBL] [Abstract][Full Text] [Related]
12. Oscillatory dynamics in a discrete predator-prey model with distributed delays. Xu C; Chen L; Li P; Guo Y PLoS One; 2018; 13(12):e0208322. PubMed ID: 30586403 [TBL] [Abstract][Full Text] [Related]
13. A stochastic model for predator-prey systems: basic properties, stability and computer simulation. Abundo M J Math Biol; 1991; 29(6):495-511. PubMed ID: 1895019 [TBL] [Abstract][Full Text] [Related]
14. Effects of a disease affecting a predator on the dynamics of a predator-prey system. Auger P; McHich R; Chowdhury T; Sallet G; Tchuente M; Chattopadhyay J J Theor Biol; 2009 Jun; 258(3):344-51. PubMed ID: 19063903 [TBL] [Abstract][Full Text] [Related]
15. [Asymptotic solutions of population dynamic equations]. Rustamov NA Biofizika; 2000; 45(4):700-3. PubMed ID: 11040980 [TBL] [Abstract][Full Text] [Related]
16. The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs. Krivan V Am Nat; 2007 Nov; 170(5):771-82. PubMed ID: 17926298 [TBL] [Abstract][Full Text] [Related]
17. Stabilizing dispersal delays in predator-prey metapopulation models. Neubert MG; Klepac P; van den Driessche P Theor Popul Biol; 2002 May; 61(3):339-47. PubMed ID: 12027620 [TBL] [Abstract][Full Text] [Related]
18. Local stability analysis of spatially homogeneous solutions of multi-patch systems. Jansen VA; Lloyd AL J Math Biol; 2000 Sep; 41(3):232-52. PubMed ID: 11072757 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of a diffusive predator-prey model with general nonlinear functional response. Yang W ScientificWorldJournal; 2014; 2014():721403. PubMed ID: 24688422 [TBL] [Abstract][Full Text] [Related]
20. The diffusive Lotka-Volterra predator-prey system with delay. Al Noufaey KS; Marchant TR; Edwards MP Math Biosci; 2015 Dec; 270(Pt A):30-40. PubMed ID: 26471317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]