These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32303846)

  • 1. Raman spectroscopic based chemometric models to support a dynamic capacitance based cell culture feeding strategy.
    Rafferty C; O'Mahony J; Rea R; Burgoyne B; Balss KM; Lyngberg O; O'Mahony-Hartnett C; Hill D; Schaefer E
    Bioprocess Biosyst Eng; 2020 Aug; 43(8):1415-1429. PubMed ID: 32303846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture.
    Rafferty C; Johnson K; O'Mahony J; Burgoyne B; Rea R; Balss KM
    Biotechnol Prog; 2020 Jul; 36(4):e2977. PubMed ID: 32012476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an in-line Raman analytical method for commercial-scale CHO cell culture process monitoring: Influence of measurement channels and batch number on model performance.
    Yan X; Dong X; Wan Y; Gao D; Chen Z; Zhang Y; Zheng Z; Chen K; Jiao J; Sun Y; He Z; Nie L; Fan X; Wang H; Qu H
    Biotechnol J; 2024 Jan; 19(1):e2300395. PubMed ID: 38180295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning monoclonal antibody galactosylation using Raman spectroscopy-controlled lactic acid feeding.
    W Eyster T; Talwar S; Fernandez J; Foster S; Hayes J; Allen R; Reidinger S; Wan B; Ji X; Aon J; Patel P; Ritz DB
    Biotechnol Prog; 2021 Jan; 37(1):e3085. PubMed ID: 32975043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ process analytical technology for real time viable cell density and cell viability during live-virus vaccine production.
    Lomont JP; Smith JP
    Int J Pharm; 2024 Jan; 649():123630. PubMed ID: 38040394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production.
    Matthews TE; Berry BN; Smelko J; Moretto J; Moore B; Wiltberger K
    Biotechnol Bioeng; 2016 Nov; 113(11):2416-24. PubMed ID: 27215441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments.
    Kim B; Woo YA
    J Pharm Biomed Anal; 2018 May; 154():278-284. PubMed ID: 29567570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring mAb cultivations with in-situ raman spectroscopy: The influence of spectral selectivity on calibration models and industrial use as reliable PAT tool.
    Santos RM; Kessler JM; Salou P; Menezes JC; Peinado A
    Biotechnol Prog; 2018 May; 34(3):659-670. PubMed ID: 29603907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time amino acid and glucose monitoring system for the automatic control of nutrient feeding in CHO cell culture using Raman spectroscopy.
    Domján J; Pantea E; Gyürkés M; Madarász L; Kozák D; Farkas A; Horváth B; Benkő Z; Nagy ZK; Marosi G; Hirsch E
    Biotechnol J; 2022 May; 17(5):e2100395. PubMed ID: 35084785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of UV- and Raman-based monitoring of the Protein A load phase and evaluation of data fusion by PLS models and CNNs.
    Rolinger L; Rüdt M; Hubbuch J
    Biotechnol Bioeng; 2021 Nov; 118(11):4255-4268. PubMed ID: 34297358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman based chemometric model development for glycation and glycosylation real time monitoring in a manufacturing scale CHO cell bioreactor process.
    A Gibbons L; Rafferty C; Robinson K; Abad M; Maslanka F; Le N; Mo J; Clark K; Madden F; Hayes R; McCarthy B; Rode C; O'Mahony J; Rea R; O'Mahony Hartnett C
    Biotechnol Prog; 2022 Mar; 38(2):e3223. PubMed ID: 34738336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures.
    Li MY; Ebel B; Paris C; Chauchard F; Guedon E; Marc A
    Biotechnol Prog; 2018 Mar; 34(2):486-493. PubMed ID: 29314747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.
    Berry BN; Dobrowsky TM; Timson RC; Kshirsagar R; Ryll T; Wiltberger K
    Biotechnol Prog; 2016; 32(1):224-34. PubMed ID: 26587969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy as a method to replace off-line pH during mammalian cell culture processes.
    Rafferty C; O'Mahony J; Burgoyne B; Rea R; Balss KM; Latshaw DC
    Biotechnol Bioeng; 2020 Jan; 117(1):146-156. PubMed ID: 31631327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Approach to Screen the Capability of Raman and Infrared (Mid- and Near-) Spectroscopy for Quantification of Low-Active Pharmaceutical Ingredient Content Solid Dosage Forms: The Case of Alprazolam.
    Makraduli L; Makreski P; Goracinova K; Stefov S; Anevska M; Geskovski N
    Appl Spectrosc; 2020 Jun; 74(6):661-673. PubMed ID: 32031007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors.
    Whelan J; Craven S; Glennon B
    Biotechnol Prog; 2012; 28(5):1355-62. PubMed ID: 22740438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors.
    Metze S; Ruhl S; Greller G; Grimm C; Scholz J
    Bioprocess Biosyst Eng; 2020 Feb; 43(2):193-205. PubMed ID: 31549309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of the cell culture monitoring using a Raman spectroscopy calibration model developed with artificially mixed samples and investigation of model learning methods using initial batch data.
    Hara R; Kobayashi W; Yamanaka H; Murayama K; Shimoda S; Ozaki Y
    Anal Bioanal Chem; 2024 Jan; 416(2):569-581. PubMed ID: 38099966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards improvement in prediction of iodine value in edible oil system based on chemometric analysis of portable vibrational spectroscopic data.
    Yan H; Zhang J; Gao J; Huang Y; Xiong Y; Min S
    Sci Rep; 2018 Oct; 8(1):14729. PubMed ID: 30283065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A batch modelling approach to monitor a freeze-drying process using in-line Raman spectroscopy.
    Sarraguça MC; De Beer T; Vervaet C; Remon JP; Lopes JA
    Talanta; 2010 Nov; 83(1):130-8. PubMed ID: 21035653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.