BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32303880)

  • 1. Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function.
    Bertram CD
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2081-2098. PubMed ID: 32303880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations.
    Li H; Mei Y; Maimon N; Padera TP; Baish JW; Munn LL
    Sci Rep; 2019 Jul; 9(1):10649. PubMed ID: 31337769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
    Bertram CD; Macaskill C; Moore JE
    J Biomech Eng; 2011 Jan; 133(1):011008. PubMed ID: 21186898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Enhanced 3D Model of Intravascular Lymphatic Valves to Assess Leaflet Apposition and Transvalvular Differences in Wall Distensibility.
    Bertram CD; Davis MJ
    Biology (Basel); 2023 Feb; 12(3):. PubMed ID: 36979071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow.
    Wilson JT; van Loon R; Wang W; Zawieja DC; Moore JE
    J Biomech; 2015 Oct; 48(13):3584-90. PubMed ID: 26315921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting ATS Open Pivot heart valve performance with computational fluid dynamics.
    Dumont K; Vierendeels JA; Segers P; Van Nooten GJ; Verdonck PR
    J Heart Valve Dis; 2005 May; 14(3):393-9. PubMed ID: 15974535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully coupled fluid-structure interaction model of the secondary lymphatic valve.
    Wilson JT; Edgar LT; Prabhakar S; Horner M; van Loon R; Moore JE
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):813-823. PubMed ID: 30398077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.
    Cheng R; Lai YG; Chandran KB
    J Heart Valve Dis; 2003 Nov; 12(6):772-80. PubMed ID: 14658820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
    Contarino C; Toro EF
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1687-1714. PubMed ID: 30006745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated geometric and mechanical analysis of an image-based lymphatic valve.
    Watson DJ; Sazonov I; Zawieja DC; Moore JE; van Loon R
    J Biomech; 2017 Nov; 64():172-179. PubMed ID: 29061390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic impact stress analysis of a bileaflet mechanical heart valve.
    Yuan Q; Xu L; Ngoi BK; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2003 Jan; 12(1):102-9. PubMed ID: 12578344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.
    Davis MJ; Rahbar E; Gashev AA; Zawieja DC; Moore JE
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H48-60. PubMed ID: 21460194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating measured valve properties into a numerical model of a lymphatic vessel.
    Bertram CD; Macaskill C; Moore JE
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1519-34. PubMed ID: 23387996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated bioprosthetic heart valve deformation under quasi-static loading.
    Sun W; Abad A; Sacks MS
    J Biomech Eng; 2005 Nov; 127(6):905-14. PubMed ID: 16438226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of design parameters on bileaflet mechanical heart valve flow dynamics.
    Govindarajan V; Udaykumar HS; Herbertson LH; Deutsch S; Manning KB; Chandran KB
    J Heart Valve Dis; 2009 Sep; 18(5):535-45. PubMed ID: 20099695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of mechanical mitral heart valve closure.
    Aluri S; Chandran KB
    Ann Biomed Eng; 2001 Aug; 29(8):665-76. PubMed ID: 11556723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
    Jamalian S; Bertram CD; Richardson WJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(12):H1709-17. PubMed ID: 24124185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical simulation of mechanical heart valve closure fluid dynamics.
    Lai YG; Chandran KB; Lemmon J
    J Biomech; 2002 Jul; 35(7):881-92. PubMed ID: 12052390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve.
    Xuan Y; Krishnan K; Ye J; Dvir D; Guccione JM; Ge L; Tseng EE
    J Thorac Cardiovasc Surg; 2017 May; 153(5):1065-1073. PubMed ID: 28108064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.