These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32304074)

  • 1. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects.
    Shrestha R; Lieberth J; Tillman S; Natalizio J; Bloomekatz J
    Adv Exp Med Biol; 2020; 1236():189-223. PubMed ID: 32304074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges.
    Yang D; Jian Z; Tang C; Chen Z; Zhou Z; Zheng L; Peng X
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Syndromic Congenital Heart Defects in Zebrafish.
    Grant MG; Patterson VL; Grimes DT; Burdine RD
    Curr Top Dev Biol; 2017; 124():1-40. PubMed ID: 28335857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebrafish models in cardiac development and congenital heart birth defects.
    Tu S; Chi NC
    Differentiation; 2012 Jul; 84(1):4-16. PubMed ID: 22704690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional testing of a human
    Farr GH; Imani K; Pouv D; Maves L
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: prevention with folic acid.
    Sarmah S; Marrs JA
    Dev Dyn; 2013 Oct; 242(10):1184-201. PubMed ID: 23832875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function.
    Sarmah S; Marrs JA
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27999267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haploinsufficiency of TAB2 causes congenital heart defects in humans.
    Thienpont B; Zhang L; Postma AV; Breckpot J; Tranchevent LC; Van Loo P; Møllgård K; Tommerup N; Bache I; Tümer Z; van Engelen K; Menten B; Mortier G; Waggoner D; Gewillig M; Moreau Y; Devriendt K; Larsen LA
    Am J Hum Genet; 2010 Jun; 86(6):839-49. PubMed ID: 20493459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac Development and Factors Influencing the Development of Congenital Heart Defects (CHDs): Part I.
    Zubrzycki M; Schramm R; Costard-Jäckle A; Grohmann J; Gummert JF; Zubrzycka M
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genetics of cardiac birth defects.
    Ransom J; Srivastava D
    Semin Cell Dev Biol; 2007 Feb; 18(1):132-9. PubMed ID: 17240175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics in zebrafish, mice, and humans to dissect congenital heart disease: insights in the role of VEGF.
    Lambrechts D; Carmeliet P
    Curr Top Dev Biol; 2004; 62():189-224. PubMed ID: 15522743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inappropriate cathepsin K secretion promotes its enzymatic activation driving heart and valve malformation.
    Lu PN; Moreland T; Christian CJ; Lund TC; Steet RA; Flanagan-Steet H
    JCI Insight; 2020 Oct; 5(20):. PubMed ID: 33055423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenic mechanisms of congenital heart disease.
    Huang JB; Liu YL; Lv XD
    Fetal Pediatr Pathol; 2010; 29(5):359-72. PubMed ID: 20704483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans.
    Karkera JD; Lee JS; Roessler E; Banerjee-Basu S; Ouspenskaia MV; Mez J; Goldmuntz E; Bowers P; Towbin J; Belmont JW; Baxevanis AD; Schier AF; Muenke M
    Am J Hum Genet; 2007 Nov; 81(5):987-94. PubMed ID: 17924340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambient temperature and congenital heart defects.
    Agay-Shay K; Friger M; Linn S; Peled A; Amitai Y; Peretz C
    Hum Reprod; 2013 Aug; 28(8):2289-97. PubMed ID: 23739216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progesterone and adipoQ receptor 11 links ras signaling to cardiac development in zebrafish.
    Huang H; Jin T; He J; Ding Q; Xu D; Wang L; Zhang Y; Pan Y; Wang Z; Chen Y
    Arterioscler Thromb Vasc Biol; 2012 Sep; 32(9):2158-70. PubMed ID: 22814753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of postembryonic heart development and maturation in the zebrafish, Danio rerio.
    Singleman C; Holtzman NG
    Dev Dyn; 2012 Dec; 241(12):1993-2004. PubMed ID: 23074141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic insights into normal and abnormal heart development.
    Nemer M
    Cardiovasc Pathol; 2008; 17(1):48-54. PubMed ID: 18160060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac Embryology and Molecular Mechanisms of Congenital Heart Disease: A Primer for Anesthesiologists.
    Kloesel B; DiNardo JA; Body SC
    Anesth Analg; 2016 Sep; 123(3):551-69. PubMed ID: 27541719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA 19a replacement partially rescues fin and cardiac defects in zebrafish model of Holt Oram syndrome.
    Chiavacci E; D'Aurizio R; Guzzolino E; Russo F; Baumgart M; Groth M; Mariani L; D'Onofrio M; Arisi I; Pellegrini M; Cellerino A; Cremisi F; Pitto L
    Sci Rep; 2015 Dec; 5():18240. PubMed ID: 26657204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.