These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32304157)

  • 81. Advancing DNA Steganography with Incorporation of Randomness.
    Cui M; Zhang Y
    Chembiochem; 2020 Sep; 21(17):2503-2511. PubMed ID: 32270906
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Novel Steganography-Based Pattern for Print Matter Anti-Counterfeiting by Smartphone Cameras.
    Zheng H; Zhou C; Li X; Guo Z; Wang T
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591083
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Run-length encoding graphic rules, biochemically editable designs and steganographical numeric data embedment for DNA-based cryptographical coding system.
    Kawano T
    Commun Integr Biol; 2013 Mar; 6(2):e23478. PubMed ID: 23750303
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Molecular Encryption and Steganography Using Mixtures of Simultaneously Sequenced, Sequence-Defined Oligourethanes.
    Dahlhauser SD; Wight CD; Moor SR; Scanga RA; Ngo P; York JT; Vera MS; Blake KJ; Riddington IM; Reuther JF; Anslyn EV
    ACS Cent Sci; 2022 Aug; 8(8):1125-1133. PubMed ID: 36032764
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Dynamically Reconfigurable DNA Origami Crystals Driven by a Designated Path Diagram.
    Yan X; Wang Y; Ma N; Yu Y; Dai L; Tian Y
    J Am Chem Soc; 2023 Feb; ():. PubMed ID: 36775921
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Domino Reaction Encoded Heterogeneous Colloidal Microswarm with On-Demand Morphological Adaptability.
    Jin D; Yuan K; Du X; Wang Q; Wang S; Zhang L
    Adv Mater; 2021 Sep; 33(37):e2100070. PubMed ID: 34337789
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Reconfigurable self-assembled DNA devices.
    Benson E; Bath J
    Sci Robot; 2023 Apr; 8(77):eadh8148. PubMed ID: 37099637
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Psst, Can You Keep a Secret?
    Vassilev A; Mouha N; Brandão L
    Computer (Long Beach Calif); 2018 Jan; 51(1):94-97. PubMed ID: 29576634
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Correction to 'Binding of DNA origami to lipids: maximizing yield and switching via strand displacement'.
    Singh JKD; Darley E; Ridone P; Gaston JP; Abbas A; Wickham SFJ; Baker MAB
    Nucleic Acids Res; 2021 Dec; 49(21):12600. PubMed ID: 34788848
    [No Abstract]   [Full Text] [Related]  

  • 90. Quantum cryptography without conjugate coding.
    Phoenix SJ
    Phys Rev A; 1993 Jul; 48(1):96-102. PubMed ID: 9909574
    [No Abstract]   [Full Text] [Related]  

  • 91. Painting on programmable reconfigurable metastructures.
    Liu Z; He X
    Nat Mater; 2023 Oct; 22(10):1171-1172. PubMed ID: 37758976
    [No Abstract]   [Full Text] [Related]  

  • 92. Preface to special topic on lattice-based cryptography.
    Yu Y
    Natl Sci Rev; 2021 Sep; 8(9):nwab154. PubMed ID: 34691746
    [No Abstract]   [Full Text] [Related]  

  • 93. Modular Reconfigurable DNA Origami: From Two-Dimensional to Three-Dimensional Structures.
    Liu Y; Cheng J; Fan S; Ge H; Luo T; Tang L; Ji B; Zhang C; Cui D; Ke Y; Song J
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):23277-23282. PubMed ID: 32894584
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Proximity-Induced Pattern Operations in Reconfigurable DNA Origami Domino Array.
    Fan S; Cheng J; Liu Y; Wang D; Luo T; Dai B; Zhang C; Cui D; Ke Y; Song J
    J Am Chem Soc; 2020 Aug; 142(34):14566-14573. PubMed ID: 32787238
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Graphene Energy Transfer for Single-Molecule Biophysics, Biosensing, and Super-Resolution Microscopy.
    Kamińska I; Bohlen J; Yaadav R; Schüler P; Raab M; Schröder T; Zähringer J; Zielonka K; Krause S; Tinnefeld P
    Adv Mater; 2021 Jun; 33(24):e2101099. PubMed ID: 33938054
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Reversible Supra-Folding of User-Programmed Functional DNA Nanostructures on Fuzzy Cationic Substrates.
    Nakazawa K; El Fakih F; Jallet V; Rossi-Gendron C; Mariconti M; Chocron L; Hishida M; Saito K; Morel M; Rudiuk S; Baigl D
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15214-15219. PubMed ID: 33675576
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Insights into the Structure and Energy of DNA Nanoassemblies.
    Jaekel A; Lill P; Whitelam S; Saccà B
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255286
    [TBL] [Abstract][Full Text] [Related]  

  • 98. DNA Origami Meets Polymers: A Powerful Tool for the Design of Defined Nanostructures.
    Hannewald N; Winterwerber P; Zechel S; Ng DYW; Hager MD; Weil T; Schubert US
    Angew Chem Int Ed Engl; 2021 Mar; 60(12):6218-6229. PubMed ID: 32649033
    [TBL] [Abstract][Full Text] [Related]  

  • 99. DNA density-dependent uptake of DNA origami-based two-or three-dimensional nanostructures by immune cells.
    Maezawa T; Ohtsuki S; Hidaka K; Sugiyama H; Endo M; Takahashi Y; Takakura Y; Nishikawa M
    Nanoscale; 2020 Jul; 12(27):14818-14824. PubMed ID: 32633313
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Controlled mechanochemical coupling of anti-junctions in DNA origami arrays.
    Cole F; Pfeiffer M; Wang D; Schröder T; Ke Y; Tinnefeld P
    Nat Commun; 2024 Sep; 15(1):7894. PubMed ID: 39256353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.