These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32304541)

  • 1. On the Chromatic Dispersion of Hydrophobic and Hydrophilic Intraocular Lenses.
    Eppig T; Rawer A; Hoffmann P; Langenbucher A; Schröder S
    Optom Vis Sci; 2020 Apr; 97(4):305-313. PubMed ID: 32304541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of chromatic dispersion on pseudophakic optical performance.
    Zhao H; Mainster MA
    Br J Ophthalmol; 2007 Sep; 91(9):1225-9. PubMed ID: 17475697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses.
    Vinas M; Dorronsoro C; Garzón N; Poyales F; Marcos S
    J Cataract Refract Surg; 2015 Oct; 41(10):2115-24. PubMed ID: 26703287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the longitudinal chromatic aberration of the intraocular lenses.
    Siedlecki D; Ginis HS
    Optom Vis Sci; 2007 Oct; 84(10):984-9. PubMed ID: 18049364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses.
    Abela-Formanek C; Amon M; Schild G; Schauersberger J; Heinze G; Kruger A
    J Cataract Refract Surg; 2002 Jan; 28(1):50-61. PubMed ID: 11777710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the image quality of extended depth-of-focus intraocular lens models in polychromatic light.
    Lee Y; Łabuz G; Son HS; Yildirim TM; Khoramnia R; Auffarth GU
    J Cataract Refract Surg; 2020 Jan; 46(1):108-115. PubMed ID: 32050240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Hydrophobic IOLs.
    Vinas M; Gonzalez-Ramos AM; Aissati S; Garzón N; Poyales F; Dorronsoro C; Marcos S
    J Refract Surg; 2020 Dec; 36(12):804-810. PubMed ID: 33295992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of YAG Laser-Induced Damage in Intraocular Lenses: Characterization of Optical and Surface Properties of YAG Shots.
    Borkenstein AF; Borkenstein EM
    Ophthalmic Res; 2021; 64(3):417-431. PubMed ID: 33221803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Results of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in uveitic eyes with cataract: comparison to a control group.
    Abela-Formanek C; Amon M; Schauersberger J; Kruger A; Nepp J; Schild G
    J Cataract Refract Surg; 2002 Jul; 28(7):1141-52. PubMed ID: 12106722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models.
    Song H; Yuan X; Tang X
    BMC Ophthalmol; 2016 Jan; 16():9. PubMed ID: 26754111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration.
    Weeber HA; Piers PA
    J Refract Surg; 2012 Jan; 28(1):48-52. PubMed ID: 22074466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses.
    Franchini A
    J Cataract Refract Surg; 2007 Mar; 33(3):497-509. PubMed ID: 17321402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography and longitudinal chromatic aberration characterizations of refractive-diffractive multifocal intraocular lenses.
    Loicq J; Willet N; Gatinel D
    J Cataract Refract Surg; 2019 Nov; 45(11):1650-1659. PubMed ID: 31585856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcification and membrane formation on the surface of intraocular lenses in a rabbit model.
    Tanaka K; Kakisu K; Okabe T; Kobayakawa S; Tochikubo T
    Curr Eye Res; 2012 Jun; 37(6):471-8. PubMed ID: 22577764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light transmittance of 1-piece hydrophobic acrylic intraocular lenses with surface light scattering removed from cadaver eyes.
    Werner L; Morris C; Liu E; Stallings S; Floyd A; Ollerton A; Leishman L; Bodnar Z
    J Cataract Refract Surg; 2014 Jan; 40(1):114-20. PubMed ID: 24269140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Hydrophobic IOL Materials and Understanding the Science of Glistenings.
    Tetz M; Jorgensen MR
    Curr Eye Res; 2015; 40(10):969-81. PubMed ID: 25621973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topography, Wettability, and Electrostatic Charge Consist Major Surface Properties of Intraocular Lenses.
    Yang N; Zhang DD; Li XD; Lu YY; Qiu XH; Zhang JS; Kong J
    Curr Eye Res; 2017 Feb; 42(2):201-210. PubMed ID: 27548409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light scattering and light transmittance of cadaver eye-explanted intraocular lenses of different materials.
    Morris C; Werner L; Barra D; Liu E; Stallings S; Floyd A
    J Cataract Refract Surg; 2014 Jan; 40(1):129-37. PubMed ID: 24355724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light scattering and light transmittance in a series of calcified single-piece hydrophilic acrylic intraocular lenses of the same design.
    Barra D; Werner L; Costa JL; Morris C; Ribeiro T; Ventura BV; Dornelles F
    J Cataract Refract Surg; 2014 Jan; 40(1):121-8. PubMed ID: 24269137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses.
    Łabuz G; Papadatou E; Khoramnia R; Auffarth GU
    J Refract Surg; 2018 Dec; 34(12):832-838. PubMed ID: 30540366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.