These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 32304654)

  • 1. Towards Engineering Broad-Spectrum Disease-Resistant Crops.
    Tian J; Xu G; Yuan M
    Trends Plant Sci; 2020 May; 25(5):424-427. PubMed ID: 32304654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise Editing Enables Crop Broad-Spectrum Resistance.
    Tian J; Xu G; Yuan M
    Mol Plant; 2019 Dec; 12(12):1542-1544. PubMed ID: 31951576
    [No Abstract]   [Full Text] [Related]  

  • 3. Recent Progress in Rice Broad-Spectrum Disease Resistance.
    Liu Z; Zhu Y; Shi H; Qiu J; Ding X; Kou Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding.
    Li W; Deng Y; Ning Y; He Z; Wang GL
    Annu Rev Plant Biol; 2020 Apr; 71():575-603. PubMed ID: 32197052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops.
    Deng Y; Ning Y; Yang DL; Zhai K; Wang GL; He Z
    Mol Plant; 2020 Oct; 13(10):1402-1419. PubMed ID: 32979566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm.
    Zhang F; Wu ZC; Wang MM; Zhang F; Dingkuhn M; Xu JL; Zhou YL; Li ZK
    PLoS One; 2017; 12(3):e0174598. PubMed ID: 28355306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stop helping pathogens: engineering plant susceptibility genes for durable resistance.
    Garcia-Ruiz H; Szurek B; Van den Ackerveken G
    Curr Opin Biotechnol; 2021 Aug; 70():187-195. PubMed ID: 34153774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Broad-Spectrum Bacterial Blight Resistance by Simultaneously Disrupting Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice.
    Xu Z; Xu X; Gong Q; Li Z; Li Y; Wang S; Yang Y; Ma W; Liu L; Zhu B; Zou L; Chen G
    Mol Plant; 2019 Nov; 12(11):1434-1446. PubMed ID: 31493565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shared cis-regulatory architecture identified across defense response genes is associated with broad-spectrum quantitative resistance in rice.
    Tonnessen BW; Bossa-Castro AM; Mauleon R; Alexandrov N; Leach JE
    Sci Rep; 2019 Feb; 9(1):1536. PubMed ID: 30733489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance.
    Deng Y; Zhai K; Xie Z; Yang D; Zhu X; Liu J; Wang X; Qin P; Yang Y; Zhang G; Li Q; Zhang J; Wu S; Milazzo J; Mao B; Wang E; Xie H; Tharreau D; He Z
    Science; 2017 Mar; 355(6328):962-965. PubMed ID: 28154240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities.
    Grant MR; Kazan K; Manners JM
    Microb Biotechnol; 2013 May; 6(3):212-22. PubMed ID: 23279915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics.
    Mota APZ; Fernandez D; Arraes FBM; Petitot AS; de Melo BP; de Sa MEL; Grynberg P; Saraiva MAP; Guimaraes PM; Brasileiro ACM; Albuquerque EVS; Danchin EGJ; Grossi-de-Sa MF
    Mol Genet Genomics; 2020 Jul; 295(4):1063-1078. PubMed ID: 32333171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.
    Wally O; Punja ZK
    GM Crops; 2010; 1(4):199-206. PubMed ID: 21844674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic engineering of the Xa10 promoter for broad-spectrum and durable resistance to Xanthomonas oryzae pv. oryzae.
    Zeng X; Tian D; Gu K; Zhou Z; Yang X; Luo Y; White FF; Yin Z
    Plant Biotechnol J; 2015 Sep; 13(7):993-1001. PubMed ID: 25644581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains.
    Crété R; Pires RN; Barbetti MJ; Renton M
    Sci Rep; 2020 Nov; 10(1):19752. PubMed ID: 33184393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eighty years of gene-for-gene relationship and its applications in identification and utilization of
    Kaur B; Bhatia D; Mavi GS
    J Genet; 2021; 100():. PubMed ID: 34282731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance.
    Tonnessen BW; Manosalva P; Lang JM; Baraoidan M; Bordeos A; Mauleon R; Oard J; Hulbert S; Leung H; Leach JE
    Plant Mol Biol; 2015 Feb; 87(3):273-86. PubMed ID: 25515696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing.
    Bisht DS; Bhatia V; Bhattacharya R
    Semin Cell Dev Biol; 2019 Dec; 96():65-76. PubMed ID: 31039395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyramiding resistance-conferring gene sequences in crops.
    Fuchs M
    Curr Opin Virol; 2017 Oct; 26():36-42. PubMed ID: 28755651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant-pathogen interactions: disease resistance in modern agriculture.
    Boyd LA; Ridout C; O'Sullivan DM; Leach JE; Leung H
    Trends Genet; 2013 Apr; 29(4):233-40. PubMed ID: 23153595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.