BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32305414)

  • 1. Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center.
    Miller LC; Zhao L; Canniffe DP; Martin D; Liu LN
    Biochim Biophys Acta Bioenerg; 2020 Aug; 1861(8):148204. PubMed ID: 32305414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Atomic force microscopy.
    Scheuring S; Seguin J; Marco S; Lévy D; Robert B; Rigaud JL
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1690-3. PubMed ID: 12574504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction site for soluble cytochromes on the tetraheme cytochrome subunit bound to the bacterial photosynthetic reaction center mapped by site-directed mutagenesis.
    Osyczka A; Nagashima KV; Sogabe S; Miki K; Yoshida M; Shimada K; Matsuura K
    Biochemistry; 1998 Aug; 37(34):11732-44. PubMed ID: 9718296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.
    Niederman RA
    Photosynth Res; 2013 Oct; 116(2-3):333-48. PubMed ID: 23708977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chimeric photosynthetic reaction center complex of purple bacteria composed of the core subunits of Rubrivivax gelatinosus and the cytochrome subunit of Blastochloris viridis.
    Maki H; Matsuura K; Shimada K; Nagashima KV
    J Biol Chem; 2003 Feb; 278(6):3921-8. PubMed ID: 12464624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy studies of native photosynthetic membranes.
    Sturgis JN; Tucker JD; Olsen JD; Hunter CN; Niederman RA
    Biochemistry; 2009 May; 48(17):3679-98. PubMed ID: 19265434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.
    Woronowicz K; Sha D; Frese RN; Sturgis JN; Nanda V; Niederman RA
    Metallomics; 2011 Aug; 3(8):765-74. PubMed ID: 21691621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer.
    Nogi T; Fathir I; Kobayashi M; Nozawa T; Miki K
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13561-6. PubMed ID: 11095707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forces guiding assembly of light-harvesting complex 2 in native membranes.
    Liu LN; Duquesne K; Oesterhelt F; Sturgis JN; Scheuring S
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9455-9. PubMed ID: 21606335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction site for high-potential iron-sulfur protein on the tetraheme cytochrome subunit bound to the photosynthetic reaction center of Rubrivivax gelatinosus.
    Osyczka A; Nagashima KV; Shimada K; Matsuura K
    Biochemistry; 1999 Mar; 38(10):2861-5. PubMed ID: 10074337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a photosynthetic LH1-RC in complex with its electron donor HiPIP.
    Kawakami T; Yu LJ; Liang T; Okazaki K; Madigan MT; Kimura Y; Wang-Otomo ZY
    Nat Commun; 2021 Feb; 12(1):1104. PubMed ID: 33597527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-harvesting antenna system from the phototrophic bacterium Roseiflexus castenholzii.
    Collins AM; Qian P; Tang Q; Bocian DF; Hunter CN; Blankenship RE
    Biochemistry; 2010 Sep; 49(35):7524-31. PubMed ID: 20672862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of photooxidation of soluble cytochromes, HiPIP, and azurin by the photosynthetic reaction center of the purple phototrophic bacterium Rhodopseudomonas viridis.
    Meyer TE; Bartsch RG; Cusanovich MA; Tollin G
    Biochemistry; 1993 May; 32(18):4719-26. PubMed ID: 8387812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoid assembly regulates quinone diffusion and the
    Xin J; Shi Y; Zhang X; Yuan X; Xin Y; He H; Shen J; Blankenship RE; Xu X
    Elife; 2023 Sep; 12():. PubMed ID: 37737710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria.
    Niederman RA
    Biochim Biophys Acta; 2016 Mar; 1857(3):232-46. PubMed ID: 26519773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of the electron transfer between the tetraheme subunit and the special pair of the photosynthetic reaction center using a microstate description.
    Becker T; Ullmann RT; Ullmann GM
    J Phys Chem B; 2007 Mar; 111(11):2957-68. PubMed ID: 17388409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy.
    Fotiadis D; Qian P; Philippsen A; Bullough PA; Engel A; Hunter CN
    J Biol Chem; 2004 Jan; 279(3):2063-8. PubMed ID: 14578348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different mechanisms of the binding of soluble electron donors to the photosynthetic reaction center of Rubrivivax gelatinosus and Blastochloris viridis.
    Osyczka A; Nagashima KV; Sogabe S; Miki K; Shimada K; Matsuura K
    J Biol Chem; 2001 Jun; 276(26):24108-12. PubMed ID: 11313347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective assembly of photosynthetic antenna proteins into a domain-structured lipid bilayer for the construction of artificial photosynthetic antenna systems: structural analysis of the assembly using surface plasmon resonance and atomic force microscopy.
    Sumino A; Dewa T; Kondo M; Morii T; Hashimoto H; Gardiner AT; Cogdell RJ; Nango M
    Langmuir; 2011 Feb; 27(3):1092-9. PubMed ID: 21204531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.