BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32305462)

  • 1. J-Domain Proteins in Bacteria and Their Viruses.
    Barriot R; Latour J; Castanié-Cornet MP; Fichant G; Genevaux P
    J Mol Biol; 2020 Jun; 432(13):3771-3789. PubMed ID: 32305462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK.
    Tomoyasu T; Tsuruno K; Tanatsugu R; Miyazaki A; Kondo H; Tabata A; Whiley RA; Sonomoto K; Nagamune H
    Microbiol Immunol; 2018 Nov; 62(11):681-693. PubMed ID: 30239035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bacteriophage-encoded J-domain protein interacts with the DnaK/Hsp70 chaperone and stabilizes the heat-shock factor σ32 of Escherichia coli.
    Perrody E; Cirinesi AM; Desplats C; Keppel F; Schwager F; Tranier S; Georgopoulos C; Genevaux P
    PLoS Genet; 2012; 8(11):e1003037. PubMed ID: 23133404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions.
    Genevaux P; Georgopoulos C; Kelley WL
    Mol Microbiol; 2007 Nov; 66(4):840-57. PubMed ID: 17919282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; Lipińska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional similarities and differences of an archaeal Hsp70(DnaK) stress protein compared with its homologue from the bacterium Escherichia coli.
    Zmijewski MA; Macario AJ; Lipińska B
    J Mol Biol; 2004 Feb; 336(2):539-49. PubMed ID: 14757064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BAH1 an E3 Ligase from Arabidopsis thaliana Stabilizes Heat Shock Factor σ
    Xu X; Liang K; Niu Y; Shen Y; Wan X; Li H; Yang Y
    Curr Microbiol; 2018 Apr; 75(4):450-455. PubMed ID: 29260303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B
    J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system.
    Han W; Christen P
    FEBS Lett; 2001 May; 497(1):55-8. PubMed ID: 11376662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone.
    Gässler CS; Buchberger A; Laufen T; Mayer MP; Schröder H; Valencia A; Bukau B
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15229-34. PubMed ID: 9860951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Hsc66-Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with the DnaK-DnaJ-grpE system.
    Silberg JJ; Hoff KG; Vickery LE
    J Bacteriol; 1998 Dec; 180(24):6617-24. PubMed ID: 9852006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens.
    Ghazaei C
    J Med Microbiol; 2017 Mar; 66(3):259-265. PubMed ID: 28086078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of a Coxiella burnetti gene product that activates capsule synthesis in Escherichia coli: requirement for the heat shock chaperone DnaK and the two-component regulator RcsC.
    Zuber M; Hoover TA; Court DL
    J Bacteriol; 1995 Aug; 177(15):4238-44. PubMed ID: 7635811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementation Assays for Co-chaperone Function.
    Edkins AL; Blatch GL
    Methods Mol Biol; 2023; 2693():105-111. PubMed ID: 37540430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation.
    Vickery LE; Cupp-Vickery JR
    Crit Rev Biochem Mol Biol; 2007; 42(2):95-111. PubMed ID: 17453917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli.
    Makhoba XH; Burger A; Coertzen D; Zininga T; Birkholtz LM; Shonhai A
    PLoS One; 2016; 11(3):e0152626. PubMed ID: 27031344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJ-GrpE chaperone system and for cell division.
    Sugimoto S; Saruwatari K; Higashi C; Sonomoto K
    Microbiology (Reading); 2008 Jul; 154(Pt 7):1876-1885. PubMed ID: 18599817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterisation of the chaperones DnaK, DnaJ, and GrpE from Clostridium acetobutylicum.
    Rüngeling E; Laufen T; Bahl H
    FEMS Microbiol Lett; 1999 Jan; 170(1):119-23. PubMed ID: 9919660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.