These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32305645)

  • 1. PV-MBLL algorithm for extraction of absolute tissue oxygenation information by diffuse optical spectroscopy.
    Bai J; Zhu Q; Liu Y; Zhou Y; Shi T; Gui Z; Shang Y
    Comput Methods Programs Biomed; 2020 Sep; 193():105456. PubMed ID: 32305645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovering the superficial microvascular pattern via diffuse reflection imaging: phantom validation.
    Chen C; Florian K; Rajesh K; Max R; Christian K; Florian S; Michael S
    Biomed Eng Online; 2015 Sep; 14():87. PubMed ID: 26419826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-calibrated pulse oximetry algorithm based on photon pathlength change and the application in human freedivers.
    Wu J; McKnight JC; Bønnelycke ES; Bosco G; Giacon TA; Kainerstorfer JM
    J Biomed Opt; 2023 Nov; 28(11):115002. PubMed ID: 38078151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MBLL with weighted partial path length for multi-distance probe configuration of fNIRS.
    Song X; Chen X; Wang Z; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4766-4769. PubMed ID: 31946927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beer-Lambert law for optical tissue diagnostics: current state of the art and the main limitations.
    Oshina I; Spigulis J
    J Biomed Opt; 2021 Oct; 26(10):. PubMed ID: 34713647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the human placenta optical scattering properties using continuous wave and frequency-domain diffuse reflectance spectroscopy.
    Khare SM; Nguyen T; Anderson AA; Hill B; Romero R; Gandjbakhche AH
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33155452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues.
    Bhatt M; Ayyalasomayajula KR; Yalavarthy PK
    J Biomed Opt; 2016 Jul; 21(7):76012. PubMed ID: 27436050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional near infrared spectroscopy using spatially resolved data to account for tissue scattering: A numerical study and arm-cuff experiment.
    Veesa JD; Dehghani H
    J Biophotonics; 2019 Oct; 12(10):e201900064. PubMed ID: 31169976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-modal diffuse optical spectroscopy for high-speed monitoring and wide-area mapping of tissue optical properties and hemodynamics.
    Lam J; Hill B; Quang T; Amelard R; Kim S; Yazdi H; Warren R; Cutler K; Tromberg B
    J Biomed Opt; 2021 Aug; 26(8):. PubMed ID: 34390234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm.
    Yamashita O; Shimokawa T; Aisu R; Amita T; Inoue Y; Sato MA
    Neuroimage; 2016 Jul; 135():287-99. PubMed ID: 27150232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of a fat on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation.
    Lin L; Niwayama M; Shiga T; Kudo N; Takahashi M; Yamamoto K
    Front Med Biol Eng; 2000; 10(1):43-58. PubMed ID: 10898475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The modified Beer-Lambert law revisited.
    Kocsis L; Herman P; Eke A
    Phys Med Biol; 2006 Mar; 51(5):N91-8. PubMed ID: 16481677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test.
    Steenhaut K; Lapage K; Bové T; De Hert S; Moerman A
    J Clin Monit Comput; 2017 Dec; 31(6):1151-1158. PubMed ID: 27878503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy.
    Torricelli A; Quaresima V; Pifferi A; Biscotti G; Spinelli L; Taroni P; Ferrari M; Cubeddu R
    Phys Med Biol; 2004 Mar; 49(5):685-99. PubMed ID: 15070196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral tissue oxygen saturation calculated using low frequency haemoglobin oscillations measured by near infrared spectroscopy in adult ventilated patients.
    Leung TS; Tisdall MM; Tachtsidis I; Smith M; Delpy DT; Elwell CE
    Adv Exp Med Biol; 2008; 614():235-44. PubMed ID: 18290334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms.
    Pogue BW; Paulsen KD; Abele C; Kaufman H
    J Biomed Opt; 2000 Apr; 5(2):185-93. PubMed ID: 10938782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for absolute calibration of near infrared tomographic tissue imaging.
    McBride TO; Pogue BW; Osterberg UL; Paulsen KD
    Adv Exp Med Biol; 2003; 530():85-99. PubMed ID: 14562707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy.
    Fantini S; Hueber D; Franceschini MA; Gratton E; Rosenfeld W; Stubblefield PG; Maulik D; Stankovic MR
    Phys Med Biol; 1999 Jun; 44(6):1543-63. PubMed ID: 10498522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared frequency domain system and fast inverse Monte Carlo algorithm for endoscopic measurement of tubular tissue.
    Zhao H; Zhou X; Fan Y; Gao F
    J Xray Sci Technol; 2011; 19(1):57-68. PubMed ID: 21422589
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.