These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32305817)

  • 41. Irregular orientation of nucleosomes in the well-defined chromatin plates of metaphase chromosomes.
    Castro-Hartmann P; Milla M; Daban JR
    Biochemistry; 2010 May; 49(19):4043-50. PubMed ID: 20369829
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis.
    Rege M; Subramanian V; Zhu C; Hsieh TH; Weiner A; Friedman N; Clauder-Münster S; Steinmetz LM; Rando OJ; Boyer LA; Peterson CL
    Cell Rep; 2015 Nov; 13(8):1610-22. PubMed ID: 26586442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A chromatin folding model that incorporates linker variability generates fibers resembling the native structures.
    Woodcock CL; Grigoryev SA; Horowitz RA; Whitaker N
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9021-5. PubMed ID: 8415647
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Between form and function: the complexity of genome folding.
    Oudelaar AM; Hanssen LLP; Hardison RC; Kassouf MT; Hughes JR; Higgs DR
    Hum Mol Genet; 2017 Oct; 26(R2):R208-R215. PubMed ID: 28977451
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nucleosome positioning and spacing: from genome-wide maps to single arrays.
    Baldi S
    Essays Biochem; 2019 Apr; 63(1):5-14. PubMed ID: 31015380
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New approaches to the study of chromosome organization.
    Sumner AT
    Sci Prog; 1983; 68(272):543-64. PubMed ID: 6367034
    [No Abstract]   [Full Text] [Related]  

  • 47. Native and reconstituted chromosome fiber fragments.
    Meyer GF; Renz M
    Chromosoma; 1979 Nov; 75(2):177-84. PubMed ID: 533668
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure of chromatin at deoxyribonucleic acid replication forks: nuclease hypersensitivity results from both prenucleosomal deoxyribonucleic acid and an immature chromatin structure.
    Cusick ME; Lee KS; DePamphilis ML; Wassarman PM
    Biochemistry; 1983 Aug; 22(16):3873-84. PubMed ID: 6311255
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Condensins and the evolution of torsion-mediated genome organization.
    Hirano T
    Trends Cell Biol; 2014 Dec; 24(12):727-33. PubMed ID: 25092191
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chromosome Dynamics in Response to DNA Damage.
    Seeber A; Hauer MH; Gasser SM
    Annu Rev Genet; 2018 Nov; 52():295-319. PubMed ID: 30208290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response.
    Sexton BS; Druliner BR; Vera DL; Avey D; Zhu F; Dennis JH
    Oncotarget; 2016 Feb; 7(6):6460-75. PubMed ID: 26771136
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.
    Drillon G; Audit B; Argoul F; Arneodo A
    J Phys Condens Matter; 2015 Feb; 27(6):064102. PubMed ID: 25563930
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chromatin accessibility: methods, mechanisms, and biological insights.
    Mansisidor AR; Risca VI
    Nucleus; 2022 Dec; 13(1):236-276. PubMed ID: 36404679
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ATP-dependent remodeling of chromatin.
    Wu C; Tsukiyama T; Gdula D; Georgel P; Martínez-Balbás M; Mizuguchi G; Ossipow V; Sandaltzopoulos R; Wang HM
    Cold Spring Harb Symp Quant Biol; 1998; 63():525-34. PubMed ID: 10384317
    [No Abstract]   [Full Text] [Related]  

  • 55. [Current insights into chromatin structure organization].
    Ilatovskiĭ AV; Lebedev DV; Filatov MV; Petukhov MG; Isaev-Ivanov VV
    Tsitologiia; 2012; 54(4):298-306. PubMed ID: 22724366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Compartmentalization of the cell nucleus and spatial organization of the genome].
    Gavrilov AA; Razin SV
    Mol Biol (Mosk); 2015; 49(1):26-45. PubMed ID: 25916108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The homeodomain transcription factor CDP/cut interacts with the cell cycle regulatory element of histone H4 genes packaged into nucleosomes.
    Last TJ; van Wijnen AJ; de Ridder MC; Stein GS; Stein JL
    Mol Biol Rep; 1999 Aug; 26(3):185-94. PubMed ID: 10532314
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arabidopsis Chromatin Assembly Factor 1 is required for occupancy and position of a subset of nucleosomes.
    Muñoz-Viana R; Wildhaber T; Trejo-Arellano MS; Mozgová I; Hennig L
    Plant J; 2017 Nov; 92(3):363-374. PubMed ID: 28786541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sequence-specific targeting of chromatin remodelers organizes precisely positioned nucleosomes throughout the genome.
    Bowman GD; McKnight JN
    Bioessays; 2017 Jan; 39(1):1-8. PubMed ID: 27862071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nucleosomes positioned by ORC facilitate the initiation of DNA replication.
    Lipford JR; Bell SP
    Mol Cell; 2001 Jan; 7(1):21-30. PubMed ID: 11172708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.