These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 32305841)
1. Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens. Luo H; Qi J; Zhou M; Liu G; Lu Y; Zhang R; Zeng C Bioresour Technol; 2020 Aug; 309():123322. PubMed ID: 32305841 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen-doped carbon dots boost microbial electrosynthesis via efficient extracellular electron uptake of acetogens. Hu J; Zeng C; Liu G; Luo H Bioresour Technol; 2024 Nov; 412():131390. PubMed ID: 39222860 [TBL] [Abstract][Full Text] [Related]
3. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide. Flexer V; Jourdin L Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521 [TBL] [Abstract][Full Text] [Related]
4. MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system. Tahir K; Miran W; Jang J; Maile N; Shahzad A; Moztahida M; Ghani AA; Kim B; Jeon H; Lee DS Sci Total Environ; 2021 Jun; 773():145677. PubMed ID: 33940757 [TBL] [Abstract][Full Text] [Related]
5. Microbiome for the Electrosynthesis of Chemicals from Carbon Dioxide. LaBelle EV; Marshall CW; May HD Acc Chem Res; 2020 Jan; 53(1):62-71. PubMed ID: 31809012 [TBL] [Abstract][Full Text] [Related]
6. Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system. Xiang Y; Liu G; Zhang R; Lu Y; Luo H Bioresour Technol; 2017 Oct; 241():821-829. PubMed ID: 28628986 [TBL] [Abstract][Full Text] [Related]
7. Development of a three-dimensional macroporous sponge biocathode coated with carbon nanotube-MXene composite for high-performance microbial electrosynthesis systems. Tahir K; Maile N; Ghani AA; Kim B; Jang J; Lee DS Bioelectrochemistry; 2022 Aug; 146():108140. PubMed ID: 35490627 [TBL] [Abstract][Full Text] [Related]
8. Metatranscriptomics Supports the Mechanism for Biocathode Electroautotrophy by " Eddie BJ; Wang Z; Hervey WJ; Leary DH; Malanoski AP; Tender LM; Lin B; Strycharz-Glaven SM mSystems; 2017; 2(2):. PubMed ID: 28382330 [TBL] [Abstract][Full Text] [Related]
9. Extracellular electron transfer in acetogenic bacteria and its application for conversion of carbon dioxide into organic compounds. Igarashi K; Kato S Appl Microbiol Biotechnol; 2017 Aug; 101(16):6301-6307. PubMed ID: 28748358 [TBL] [Abstract][Full Text] [Related]
10. High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm. Song TS; Zhang H; Liu H; Zhang D; Wang H; Yang Y; Yuan H; Xie J Bioresour Technol; 2017 Nov; 243():573-582. PubMed ID: 28704738 [TBL] [Abstract][Full Text] [Related]
11. Enhanced product selectivity in the microbial electrosynthesis of butyrate using a nickel ferrite-coated biocathode. Tahir K; Miran W; Jang J; Woo SH; Lee DS Environ Res; 2021 May; 196():110907. PubMed ID: 33639146 [TBL] [Abstract][Full Text] [Related]
12. Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal. Li W; Yue H; Zhang C; Hu J; Wang Q; Li Y; Zhang S; Chen J; Zhao J Chemosphere; 2022 Sep; 303(Pt 1):134943. PubMed ID: 35569635 [TBL] [Abstract][Full Text] [Related]
13. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Bajracharya S; Vanbroekhoven K; Buisman CJ; Pant D; Strik DP Environ Sci Pollut Res Int; 2016 Nov; 23(22):22292-22308. PubMed ID: 27436381 [TBL] [Abstract][Full Text] [Related]
14. Enhanced bidirectional extracellular electron transfer based on biointerface interaction of conjugated polymers-bacteria biohybrid system. Zhang P; Zhou X; Wang X; Li Z Colloids Surf B Biointerfaces; 2023 Aug; 228():113383. PubMed ID: 37295125 [TBL] [Abstract][Full Text] [Related]
15. Extracellular electron transfer across bio-nano interfaces for CO Li Z; Xiong W; Tremolet de Villers BJ; Wu C; Hao J; Blackburn JL; Svedruzic D Nanoscale; 2021 Jan; 13(2):1093-1102. PubMed ID: 33393959 [TBL] [Abstract][Full Text] [Related]
16. Metabolic Reconstruction and Modeling Microbial Electrosynthesis. Marshall CW; Ross DE; Handley KM; Weisenhorn PB; Edirisinghe JN; Henry CS; Gilbert JA; May HD; Norman RS Sci Rep; 2017 Aug; 7(1):8391. PubMed ID: 28827682 [TBL] [Abstract][Full Text] [Related]
17. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes. Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104 [TBL] [Abstract][Full Text] [Related]
18. Reinforcement of denitrification in a biofilm electrode reactor with immobilized polypyrrole/anthraquinone-2,6-disulfonate composite cathode. Zhai S; Cheng H; Wang Q; Zhao Y; Wang A; Ji M J Environ Manage; 2022 Aug; 315():115203. PubMed ID: 35525049 [TBL] [Abstract][Full Text] [Related]
19. Hybrid bio-organic interfaces with matchable nanoscale topography for durable high extracellular electron transfer activity. Ding C; Liu H; Lv M; Zhao T; Zhu Y; Jiang L Nanoscale; 2014 Jul; 6(14):7866-71. PubMed ID: 24927486 [TBL] [Abstract][Full Text] [Related]
20. Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. Izadi P; Fontmorin JM; Godain A; Yu EH; Head IM NPJ Biofilms Microbiomes; 2020 Oct; 6(1):40. PubMed ID: 33056998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]