BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32305911)

  • 21. Impact of imaging cross-section on visualization of thyroid microvessels using ultrasound: Pilot study.
    Nayak R; Nawar N; Webb J; Fatemi M; Alizad A
    Sci Rep; 2020 Jan; 10(1):415. PubMed ID: 31942039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Super-resolution of 2D ultrasound images and videos.
    Cammarasana S; Nicolardi P; Patanè G
    Med Biol Eng Comput; 2023 Oct; 61(10):2511-2526. PubMed ID: 37195517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Super-Resolution Ultrasound Imaging of Skeletal Muscle Microvascular Dysfunction in an Animal Model of Type 2 Diabetes.
    Ghosh D; Peng J; Brown K; Sirsi S; Mineo C; Shaul PW; Hoyt K
    J Ultrasound Med; 2019 Oct; 38(10):2589-2599. PubMed ID: 30706511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep learning-based plane pose regression in obstetric ultrasound.
    Di Vece C; Dromey B; Vasconcelos F; David AL; Peebles D; Stoyanov D
    Int J Comput Assist Radiol Surg; 2022 May; 17(5):833-839. PubMed ID: 35489005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Region-based SVD processing of high-frequency ultrafast ultrasound to visualize cutaneous vascular networks.
    Bhatti A; Ishii T; Kanno N; Ikeda H; Funamoto K; Saijo Y
    Ultrasonics; 2023 Mar; 129():106907. PubMed ID: 36495767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimizing Image Quality Loss After Channel Count Reduction for Plane Wave Ultrasound via Deep Learning Inference.
    Xiao D; Pitman WMK; Yiu BYS; Chee AJY; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2849-2861. PubMed ID: 35862334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superharmonic Ultrasound for Motion-Independent Localization Microscopy: Applications to Microvascular Imaging From Low to High Flow Rates.
    Kierski TM; Espindola D; Newsome IG; Cherin E; Yin J; Foster FS; Demore CEM; Pinton GF; Dayton PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):957-967. PubMed ID: 31940529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beamforming and Speckle Reduction Using Neural Networks.
    Hyun D; Brickson LL; Looby KT; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):898-910. PubMed ID: 30869612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative sub-resolution blood velocity estimation using ultrasound localization microscopy ex-vivo and in-vivo.
    Espíndola D; DeRuiter RM; Santibanez F; Dayton PA; Pinton G
    Biomed Phys Eng Express; 2020 Apr; 6(3):035019. PubMed ID: 33438664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real time SVD-based clutter filtering using randomized singular value decomposition and spatial downsampling for micro-vessel imaging on a Verasonics ultrasound system.
    Lok UW; Song P; Trzasko JD; Daigle R; Borisch EA; Huang C; Gong P; Tang S; Ling W; Chen S
    Ultrasonics; 2020 Sep; 107():106163. PubMed ID: 32353739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue.
    Espindola D; Lin F; Soulioti DE; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2255-2263. PubMed ID: 30136938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust real-time bone surfaces segmentation from ultrasound using a local phase tensor-guided CNN.
    Wang P; Vives M; Patel VM; Hacihaliloglu I
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1127-1135. PubMed ID: 32430694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning for fast super-resolution ultrasound microvessel imaging.
    Luan S; Yu X; Lei S; Ma C; Wang X; Xue X; Ding Y; Ma T; Zhu B
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37934040
    [No Abstract]   [Full Text] [Related]  

  • 36. Independent Component-Based Spatiotemporal Clutter Filtering for Slow Flow Ultrasound.
    Tierney J; Baker J; Brown D; Wilkes D; Byram B
    IEEE Trans Med Imaging; 2020 May; 39(5):1472-1482. PubMed ID: 31689187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep learning-based reconstruction of ultrasound images from raw channel data.
    Strohm H; Rothlübbers S; Eickel K; Günther M
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1487-1490. PubMed ID: 32495155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Frame Rate Contrast-Enhanced Ultrasound Imaging for Slow Lymphatic Flow: Influence of Ultrasound Pressure and Flow Rate on Bubble Disruption and Image Persistence.
    Zhu J; Lin S; Leow CH; Rowland EM; Riemer K; Harput S; Weinberg PD; Tang MX
    Ultrasound Med Biol; 2019 Sep; 45(9):2456-2470. PubMed ID: 31279503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning-Based Super-resolution Ultrasound Speckle Tracking Velocimetry.
    Park JH; Choi W; Yoon GY; Lee SJ
    Ultrasound Med Biol; 2020 Mar; 46(3):598-609. PubMed ID: 31917044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive noise reduction for power Doppler imaging using SVD filtering in the channel domain and coherence weighting of pixels.
    Pialot B; Lachambre C; Mur AL; Augeul L; Petrusca L; Basarab A; Varray F
    Phys Med Biol; 2023 Jan; 68(2):. PubMed ID: 36595318
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.