BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32305911)

  • 61. Super resolution for root imaging.
    Ruiz-Munoz JF; Nimmagadda JK; Dowd TG; Baciak JE; Zare A
    Appl Plant Sci; 2020 Jul; 8(7):e11374. PubMed ID: 32765973
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Post-processing radio-frequency signal based on deep learning method for ultrasonic microbubble imaging.
    Dai M; Li S; Wang Y; Zhang Q; Yu J
    Biomed Eng Online; 2019 Sep; 18(1):95. PubMed ID: 31511011
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Image Noise Removal in Ultrasound Breast Images Based on Hybrid Deep Learning Technique.
    Vimala BB; Srinivasan S; Mathivanan SK; Muthukumaran V; Babu JC; Herencsar N; Vilcekova L
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772207
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multiscale brain MRI super-resolution using deep 3D convolutional networks.
    Pham CH; Tor-Díez C; Meunier H; Bednarek N; Fablet R; Passat N; Rousseau F
    Comput Med Imaging Graph; 2019 Oct; 77():101647. PubMed ID: 31493703
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reinforcement learning using Deep [Formula: see text] networks and [Formula: see text] learning accurately localizes brain tumors on MRI with very small training sets.
    Stember JN; Shalu H
    BMC Med Imaging; 2022 Dec; 22(1):224. PubMed ID: 36564724
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A novel strategy to develop deep learning for image super-resolution using original ultra-high-resolution computed tomography images of lung as training dataset.
    Kitahara H; Nagatani Y; Otani H; Nakayama R; Kida Y; Sonoda A; Watanabe Y
    Jpn J Radiol; 2022 Jan; 40(1):38-47. PubMed ID: 34318444
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Super-resolution of brain tumor MRI images based on deep learning.
    Zhou Z; Ma A; Feng Q; Wang R; Cheng L; Chen X; Yang X; Liao K; Miao Y; Qiu Y
    J Appl Clin Med Phys; 2022 Nov; 23(11):e13758. PubMed ID: 36107021
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Adaptive Spatiotemporal SVD Clutter Filtering for Ultrafast Doppler Imaging Using Similarity of Spatial Singular Vectors.
    Baranger J; Arnal B; Perren F; Baud O; Tanter M; Demene C
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1574-1586. PubMed ID: 29969408
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nonlinear Imaging of Microbubble Contrast Agent Using the Volterra Filter: In Vivo Results.
    Du J; Liu D; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2069-2081. PubMed ID: 27705855
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Contrast enhanced ultrasound by real-time spatiotemporal filtering of ultrafast images.
    Desailly Y; Tissier AM; Correas JM; Wintzenrieth F; Tanter M; Couture O
    Phys Med Biol; 2017 Jan; 62(1):31-42. PubMed ID: 27973352
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Convolution neural networks for real-time needle detection and localization in 2D ultrasound.
    Mwikirize C; Nosher JL; Hacihaliloglu I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):647-657. PubMed ID: 29512006
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Super-resolution biomedical imaging via reference-free statistical implicit neural representation.
    Ye S; Shen L; Islam MT; Xing L
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37757838
    [No Abstract]   [Full Text] [Related]  

  • 74. An Infrared Array Sensor-Based Approach for Activity Detection, Combining Low-Cost Technology with Advanced Deep Learning Techniques.
    Muthukumar KA; Bouazizi M; Ohtsuki T
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632305
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Deep-fUS: A Deep Learning Platform for Functional Ultrasound Imaging of the Brain Using Sparse Data.
    Di Ianni T; Airan RD
    IEEE Trans Med Imaging; 2022 Jul; 41(7):1813-1825. PubMed ID: 35108201
    [TBL] [Abstract][Full Text] [Related]  

  • 76. SGSR: style-subnets-assisted generative latent bank for large-factor super-resolution with registered medical image dataset.
    Zheng T; Oda H; Hayashi Y; Nakamura S; Mori M; Takabatake H; Natori H; Oda M; Mori K
    Int J Comput Assist Radiol Surg; 2024 Mar; 19(3):493-506. PubMed ID: 38129364
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Clutter suppression in ultrasound: performance evaluation and review of low-rank and sparse matrix decomposition methods.
    Zhang N; Ashikuzzaman M; Rivaz H
    Biomed Eng Online; 2020 May; 19(1):37. PubMed ID: 32466753
    [TBL] [Abstract][Full Text] [Related]  

  • 78. ASAP: Super-Contrast Vasculature Imaging Using Coherence Analysis and High Frame-Rate Contrast Enhanced Ultrasound.
    Stanziola A; Leow CH; Bazigou E; Weinberg PD; Tang MX
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1847-1856. PubMed ID: 29994061
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Morphological Reconstruction Improves Microvessel Mapping in Super-Resolution Ultrasound.
    Schoen S; Zhao Z; Alva A; Huang C; Chen S; Arvanitis C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2141-2149. PubMed ID: 33544672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.