These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 32305925)
21. Using wearables to assess bradykinesia and rigidity in patients with Parkinson's disease: a focused, narrative review of the literature. Teshuva I; Hillel I; Gazit E; Giladi N; Mirelman A; Hausdorff JM J Neural Transm (Vienna); 2019 Jun; 126(6):699-710. PubMed ID: 31115669 [TBL] [Abstract][Full Text] [Related]
22. Progression of Parkinson's disease following thalamic deep brain stimulation for tremor. Tarsy D; Scollins L; Corapi K; O'Herron S; Apetauerova D; Norregaard T Stereotact Funct Neurosurg; 2005; 83(5-6):222-7. PubMed ID: 16534254 [TBL] [Abstract][Full Text] [Related]
23. Towards motor evaluation of Parkinson's Disease Patients using wearable inertial sensors. Anand V; Bilal E; Ho B; Rice JJ AMIA Annu Symp Proc; 2020; 2020():203-212. PubMed ID: 33936392 [TBL] [Abstract][Full Text] [Related]
24. Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit. Dai H; Zhang P; Lueth TC Sensors (Basel); 2015 Sep; 15(10):25055-71. PubMed ID: 26426020 [TBL] [Abstract][Full Text] [Related]
25. QAPD: an integrated system to quantify symptoms of Parkinson's disease. Patel V; Burns M; Pourfar M; Mogilner A; Kondziolka D; Vinjamuri R Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1822-1825. PubMed ID: 28268681 [TBL] [Abstract][Full Text] [Related]
26. Objective Assessment of Bradykinesia Estimated from the Wrist Extension in Older Adults and Patients with Parkinson's Disease. Rabelo AG; Neves LP; Paixão APS; Oliveira FHM; de Souza LAPS; Vieira MF; Pereira AA; Andrade AO Ann Biomed Eng; 2017 Nov; 45(11):2614-2625. PubMed ID: 28852889 [TBL] [Abstract][Full Text] [Related]
27. Quantification of Hand Motor Symptoms in Parkinson's Disease: A Proof-of-Principle Study Using Inertial and Force Sensors. van den Noort JC; Verhagen R; van Dijk KJ; Veltink PH; Vos MCPM; de Bie RMA; Bour LJ; Heida CT Ann Biomed Eng; 2017 Oct; 45(10):2423-2436. PubMed ID: 28726022 [TBL] [Abstract][Full Text] [Related]
28. Predicting UPDRS Motor Symptoms in Individuals With Parkinson's Disease From Force Plates Using Machine Learning. Exley T; Moudy S; Patterson RM; Kim J; Albert MV IEEE J Biomed Health Inform; 2022 Jul; 26(7):3486-3494. PubMed ID: 35259121 [TBL] [Abstract][Full Text] [Related]
29. Analyzing the effects of PDSAFEx™ on the motor symptoms of Parkinson's disease: A retrospective study. Sangarapillai K; Norman BM; Almeida QJ NeuroRehabilitation; 2020; 46(4):589-593. PubMed ID: 32508333 [TBL] [Abstract][Full Text] [Related]
30. Progression of motor symptoms in Parkinson's disease. Xia R; Mao ZH Neurosci Bull; 2012 Feb; 28(1):39-48. PubMed ID: 22233888 [TBL] [Abstract][Full Text] [Related]
31. App-Based Bradykinesia Tasks for Clinic and Home Assessment in Parkinson's Disease: Reliability and Responsiveness. Heldman DA; Urrea-Mendoza E; Lovera LC; Schmerler DA; Garcia X; Mohammad ME; McFarlane MCU; Giuffrida JP; Espay AJ; Fernandez HH J Parkinsons Dis; 2017; 7(4):741-747. PubMed ID: 28922169 [TBL] [Abstract][Full Text] [Related]
32. Improving Automatic Tremor and Movement Motor Disorder Severity Assessment for Parkinson's Disease with Deep Joint Training. Chang CM; Huang YL; Chen JC; Lee CC Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3408-3411. PubMed ID: 31946611 [TBL] [Abstract][Full Text] [Related]
33. Ambulatory monitoring of activities and motor symptoms in Parkinson's disease. Zwartjes DG; Heida T; van Vugt JP; Geelen JA; Veltink PH IEEE Trans Biomed Eng; 2010 Nov; 57(11):. PubMed ID: 20460198 [TBL] [Abstract][Full Text] [Related]
34. Wrist sensor-based tremor severity quantification in Parkinson's disease using convolutional neural network. Kim HB; Lee WW; Kim A; Lee HJ; Park HY; Jeon HS; Kim SK; Jeon B; Park KS Comput Biol Med; 2018 Apr; 95():140-146. PubMed ID: 29500984 [TBL] [Abstract][Full Text] [Related]
35. Evaluation for Parkinsonian Bradykinesia by deep learning modeling of kinematic parameters. Park DJ; Lee JW; Lee MJ; Ahn SJ; Kim J; Kim GL; Ra YJ; Cho YN; Jeong WB J Neural Transm (Vienna); 2021 Feb; 128(2):181-189. PubMed ID: 33507401 [TBL] [Abstract][Full Text] [Related]
36. Objective measurement versus clinician-based assessment for Parkinson's disease. Guerra A; D'Onofrio V; Ferreri F; Bologna M; Antonini A Expert Rev Neurother; 2023; 23(8):689-702. PubMed ID: 37366316 [TBL] [Abstract][Full Text] [Related]
37. Continuous home monitoring of Parkinson's disease using inertial sensors: A systematic review. Sica M; Tedesco S; Crowe C; Kenny L; Moore K; Timmons S; Barton J; O'Flynn B; Komaris DS PLoS One; 2021; 16(2):e0246528. PubMed ID: 33539481 [TBL] [Abstract][Full Text] [Related]
38. Rotigotine for nocturnal hypokinesia in Parkinson's disease: Quantitative analysis of efficacy from a randomized, placebo-controlled trial using an axial inertial sensor. Bhidayasiri R; Sringean J; Chaiwong S; Anan C; Penkeaw N; Leaknok A; Boonpang K; Saksornchai K; Rattanachaisit W; Thanawattano C; Jagota P Parkinsonism Relat Disord; 2017 Nov; 44():124-128. PubMed ID: 28818560 [TBL] [Abstract][Full Text] [Related]
39. Continuous Assessment of Levodopa Response in Parkinson's Disease Using Wearable Motion Sensors. Pulliam CL; Heldman DA; Brokaw EB; Mera TO; Mari ZK; Burack MA IEEE Trans Biomed Eng; 2018 Jan; 65(1):159-164. PubMed ID: 28459677 [TBL] [Abstract][Full Text] [Related]
40. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. During MJ; Kaplitt MG; Stern MB; Eidelberg D Hum Gene Ther; 2001 Aug; 12(12):1589-91. PubMed ID: 11529246 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]