These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32305935)

  • 1. Identifying Microbe-Disease Association Based on a Novel Back-Propagation Neural Network Model.
    Li H; Wang Y; Zhang Z; Tan Y; Chen Z; Wang X; Pei T; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2502-2513. PubMed ID: 32305935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):611-620. PubMed ID: 31295117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BRWMDA:Predicting Microbe-Disease Associations Based on Similarities and Bi-Random Walk on Disease and Microbe Networks.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1595-1604. PubMed ID: 30932846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network.
    Long Y; Luo J
    BMC Bioinformatics; 2019 Nov; 20(1):541. PubMed ID: 31675979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of potential drug-microbe associations based on matrix factorization and a three-layer heterogeneous network.
    Li H; Hou ZJ; Zhang WG; Qu J; Yao HB; Chen Y
    Comput Biol Chem; 2023 Jun; 104():107857. PubMed ID: 37018909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel computational model for predicting potential LncRNA-disease associations based on both direct and indirect features of LncRNA-disease pairs.
    Xiao Y; Xiao Z; Feng X; Chen Z; Kuang L; Wang L
    BMC Bioinformatics; 2020 Dec; 21(1):555. PubMed ID: 33267800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach for predicting microbe-disease associations by bi-random walk on the heterogeneous network.
    Zou S; Zhang J; Zhang Z
    PLoS One; 2017; 12(9):e0184394. PubMed ID: 28880967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CMFHMDA: a prediction framework for human disease-microbe associations based on cross-domain matrix factorization.
    Chen J; Tao R; Qiu Y; Yuan Q
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Similarities Bilinear Matrix Factorization-Based Method for Predicting Human Microbe-Disease Associations.
    Yang X; Kuang L; Chen Z; Wang L
    Front Genet; 2021; 12():754425. PubMed ID: 34721543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting potential microbe-disease associations based on dual branch graph convolutional network.
    Chen J; Zhu Y; Yuan Q
    J Cell Mol Med; 2024 Aug; 28(15):e18571. PubMed ID: 39086148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HKFGCN: A novel multiple kernel fusion framework on graph convolutional network to predict microbe-drug associations.
    Wu Z; Li S; Luo L; Ding P
    Comput Biol Chem; 2024 Jun; 110():108041. PubMed ID: 38471354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NTSHMDA: Prediction of Human Microbe-Disease Association Based on Random Walk by Integrating Network Topological Similarity.
    Luo J; Long Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1341-1351. PubMed ID: 30489271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities.
    Xu D; Xu H; Zhang Y; Wang M; Chen W; Gao R
    J Transl Med; 2021 Feb; 19(1):66. PubMed ID: 33579301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network.
    Peng L; Huang L; Tian G; Wu Y; Li G; Cao J; Wang P; Li Z; Duan L
    Front Microbiol; 2023; 14():1244527. PubMed ID: 37789848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases.
    Chen X; Huang YA; You ZH; Yan GY; Wang XS
    Bioinformatics; 2017 Mar; 33(5):733-739. PubMed ID: 28025197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm.
    Liu H; Bing P; Zhang M; Tian G; Ma J; Li H; Bao M; He K; He J; He B; Yang J
    Comput Struct Biotechnol J; 2023; 21():1414-1423. PubMed ID: 36824227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bidirectional Label Propagation Based Computational Model for Potential Microbe-Disease Association Prediction.
    Wang L; Wang Y; Li H; Feng X; Yuan D; Yang J
    Front Microbiol; 2019; 10():684. PubMed ID: 31024481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PRWHMDA: Human Microbe-Disease Association Prediction by Random Walk on the Heterogeneous Network with PSO.
    Wu C; Gao R; Zhang D; Han S; Zhang Y
    Int J Biol Sci; 2018; 14(8):849-857. PubMed ID: 29989079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted Network.
    Li H; Wang Y; Jiang J; Zhao H; Feng X; Zhao B; Wang L
    Front Microbiol; 2019; 10():676. PubMed ID: 31024478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.