BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32306138)

  • 21. Inhibition of IL-8 release from CFTR-deficient lung epithelial cells following pre-treatment with fenretinide.
    Vilela RM; Lands LC; Meehan B; Kubow S
    Int Immunopharmacol; 2006 Nov; 6(11):1651-64. PubMed ID: 16979119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myriocin treatment of CF lung infection and inflammation: complex analyses for enigmatic lipids.
    Caretti A; Vasso M; Bonezzi FT; Gallina A; Trinchera M; Rossi A; Adami R; Casas J; Falleni M; Tosi D; Bragonzi A; Ghidoni R; Gelfi C; Signorelli P
    Naunyn Schmiedebergs Arch Pharmacol; 2017 Aug; 390(8):775-790. PubMed ID: 28439630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction.
    Garić D; De Sanctis JB; Dumut DC; Shah J; Peña MJ; Youssef M; Petrof BJ; Kopriva F; Hanrahan JW; Hajduch M; Radzioch D
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158538. PubMed ID: 31678518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation of ceramide in the trachea and intestine of cystic fibrosis mice causes inflammation and cell death.
    Becker KA; Tümmler B; Gulbins E; Grassmé H
    Biochem Biophys Res Commun; 2010 Dec; 403(3-4):368-74. PubMed ID: 21078296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of the inflammasome by ceramide in cystic fibrosis lungs.
    Grassmé H; Carpinteiro A; Edwards MJ; Gulbins E; Becker KA
    Cell Physiol Biochem; 2014; 34(1):45-55. PubMed ID: 24977480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection.
    Zhang Y; Li X; Grassmé H; Döring G; Gulbins E
    J Immunol; 2010 May; 184(9):5104-11. PubMed ID: 20351190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of Sphingolipid Synthesis as a Phenotype-Modifying Therapy in Cystic Fibrosis.
    Mingione A; Dei Cas M; Bonezzi F; Caretti A; Piccoli M; Anastasia L; Ghidoni R; Paroni R; Signorelli P
    Cell Physiol Biochem; 2020 Jan; 54(1):110-125. PubMed ID: 31999897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ceramide mediates lung fibrosis in cystic fibrosis.
    Ziobro R; Henry B; Edwards MJ; Lentsch AB; Gulbins E
    Biochem Biophys Res Commun; 2013 May; 434(4):705-9. PubMed ID: 23523785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatty acid metabolism in cystic fibrosis.
    Strandvik B
    Prostaglandins Leukot Essent Fatty Acids; 2010 Sep; 83(3):121-9. PubMed ID: 20673710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. No indications for altered essential fatty acid metabolism in two murine models for cystic fibrosis.
    Werner A; Bongers ME; Bijvelds MJ; de Jonge HR; Verkade HJ
    J Lipid Res; 2004 Dec; 45(12):2277-86. PubMed ID: 15466369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The "Goldilocks effect" in cystic fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse.
    Cohen JC; Lundblad LK; Bates JH; Levitzky M; Larson JE
    BMC Genet; 2004 Jul; 5():21. PubMed ID: 15279681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cystic Fibrosis: Pathophysiology of Lung Disease.
    Bergeron C; Cantin AM
    Semin Respir Crit Care Med; 2019 Dec; 40(6):715-726. PubMed ID: 31659725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ceramide in Pseudomonas aeruginosa infections and cystic fibrosis.
    Becker KA; Grassmé H; Zhang Y; Gulbins E
    Cell Physiol Biochem; 2010; 26(1):57-66. PubMed ID: 20502005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation.
    Saadane A; Soltys J; Berger M
    J Allergy Clin Immunol; 2006 May; 117(5):1163-9. PubMed ID: 16675347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation.
    Hsu D; Taylor P; Fletcher D; van Heeckeren R; Eastman J; van Heeckeren A; Davis P; Chmiel JF; Pearlman E; Bonfield TL
    Infect Immun; 2016 Sep; 84(9):2410-21. PubMed ID: 27271746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of histone-deacetylase activity rescues inflammatory cystic fibrosis lung disease by modulating innate and adaptive immune responses.
    Bodas M; Mazur S; Min T; Vij N
    Respir Res; 2018 Jan; 19(1):2. PubMed ID: 29301535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nutritional effects on host response to lung infections with mucoid Pseudomonas aeruginosa in mice.
    van Heeckeren AM; Schluchter M; Xue L; Alvarez J; Freedman S; St George J; Davis PB
    Infect Immun; 2004 Mar; 72(3):1479-86. PubMed ID: 14977953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lung arginase expression and activity is increased in cystic fibrosis mouse models.
    Jaecklin T; Duerr J; Huang H; Rafii M; Bear CE; Ratjen F; Pencharz P; Kavanagh BP; Mall MA; Grasemann H
    J Appl Physiol (1985); 2014 Aug; 117(3):284-8. PubMed ID: 24925982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethanol administration to cystic fibrosis knockout mice results in increased fatty acid ethyl ester production.
    Blanco PG; Salem RO; Ollero M; Zaman MM; Cluette-Brown JE; Freedman SD; Laposata M
    Alcohol Clin Exp Res; 2005 Nov; 29(11):2039-45. PubMed ID: 16340462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model.
    Durie PR; Kent G; Phillips MJ; Ackerley CA
    Am J Pathol; 2004 Apr; 164(4):1481-93. PubMed ID: 15039235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.