These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32306736)

  • 1. Differential Interactions of Piscidins with Phospholipids and Lipopolysaccharides at Membrane Interfaces.
    Cetuk H; Maramba J; Britt M; Scott AJ; Ernst RK; Mihailescu M; Cotten ML; Sukharev S
    Langmuir; 2020 May; 36(18):5065-5077. PubMed ID: 32306736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge and aggregation pattern govern the interaction of plasticins with LPS monolayers mimicking the external leaflet of the outer membrane of Gram-negative bacteria.
    Michel JP; Wang YX; Dé E; Fontaine P; Goldmann M; Rosilio V
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2967-79. PubMed ID: 26343162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization.
    Shang D; Zhang Q; Dong W; Liang H; Bi X
    Acta Biomater; 2016 Mar; 33():153-65. PubMed ID: 26804205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization.
    Domadia PN; Bhunia A; Ramamoorthy A; Bhattacharjya S
    J Am Chem Soc; 2010 Dec; 132(51):18417-28. PubMed ID: 21128620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria?
    Gong H; Hu X; Zhang L; Fa K; Liao M; Liu H; Fragneto G; Campana M; Lu JR
    J Colloid Interface Sci; 2023 May; 637():182-192. PubMed ID: 36701864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium adsorption and displacement: characterization of lipid monolayers and their interaction with membrane-active peptides/proteins.
    Hagge SO; Hammer MU; Wiese A; Seydel U; Gutsmann T
    BMC Biochem; 2006 May; 7():15. PubMed ID: 16672047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partitioning of Seven Different Classes of Antibiotics into LPS Monolayers Supports Three Different Permeation Mechanisms through the Outer Bacterial Membrane.
    Cetuk H; Anishkin A; Scott AJ; Rempe SB; Ernst RK; Sukharev S
    Langmuir; 2021 Feb; 37(4):1372-1385. PubMed ID: 33449700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts.
    Tefsen B; Geurtsen J; Beckers F; Tommassen J; de Cock H
    J Biol Chem; 2005 Feb; 280(6):4504-9. PubMed ID: 15576375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of piscidin antimicrobial peptides on the formation of Gram-negative bacterial biofilms.
    Prior BS; Lange MD; Salger SA; Reading BJ; Peatman E; Beck BH
    J Fish Dis; 2022 Jan; 45(1):99-105. PubMed ID: 34590712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides.
    Papo N; Shai Y
    J Biol Chem; 2005 Mar; 280(11):10378-87. PubMed ID: 15632151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The
    May KL; Silhavy TJ
    mBio; 2018 Mar; 9(2):. PubMed ID: 29559571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides.
    Clausell A; Garcia-Subirats M; Pujol M; Busquets MA; Rabanal F; Cajal Y
    J Phys Chem B; 2007 Jan; 111(3):551-63. PubMed ID: 17228913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms that govern the specificity of Sushi peptides for Gram-negative bacterial membrane lipids.
    Li P; Sun M; Wohland T; Yang D; Ho B; Ding JL
    Biochemistry; 2006 Sep; 45(35):10554-62. PubMed ID: 16939207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Molecular Dynamics Study of Antimicrobial Peptide Interactions with the Lipopolysaccharides of the Outer Bacterial Membrane.
    Sharma P; Ayappa KG
    J Membr Biol; 2022 Dec; 255(6):665-675. PubMed ID: 35960325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arg-biodynamers as antibiotic potentiators through interacting with Gram-negative outer membrane lipopolysaccharides.
    Kamal MAM; Bassil J; Loretz B; Hirsch AKH; Lee S; Lehr CM
    Eur J Pharm Biopharm; 2024 Jul; 200():114336. PubMed ID: 38795784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid-mediated resistance of Gram-negative bacteria against various pore-forming antimicrobial peptides.
    Gutsmann T; Hagge SO; David A; Roes S; Böhling A; Hammer MU; Seydel U
    J Endotoxin Res; 2005; 11(3):167-73. PubMed ID: 15949145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of antibacterial peptides spanning the carboxy-terminal region of human beta-defensins 1-3 with phospholipids at the air-water interface and inner membrane of E. coli.
    Krishnakumari V; Nagaraj R
    Peptides; 2008 Jan; 29(1):7-14. PubMed ID: 18063441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane.
    Paracini N; Schneck E; Imberty A; Micciulla S
    Adv Colloid Interface Sci; 2022 Mar; 301():102603. PubMed ID: 35093846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes.
    Alexander TE; Smith IM; Lipsky ZW; Lozeau LD; Camesano TA
    Biointerphases; 2020 May; 15(3):031007. PubMed ID: 32456440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Alligator Immune Peptides Kill Gram-Negative Bacteria: A Lipid-Scrambling, Squeezing, and Extracting Mechanism Revealed by Theoretical Simulations.
    Li X; Fu L; Zhang S; Wang Y; Gao L
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.