These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 32307453)

  • 1. Rib kinematics analysis in oblique and lateral impact tests.
    Jastrzębski D; Perz R
    Acta Bioeng Biomech; 2020; 22(1):135-141. PubMed ID: 32307453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofidelity Corridors for Sternum Kinematics in Low-Speed Side Impacts.
    Subit D; Möhler F; Pipkorn B
    Traffic Inj Prev; 2015; 16 Suppl 2():S168-75. PubMed ID: 26436228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of intercostal muscle and costovertebral joint material properties on human ribcage stiffness and kinematics.
    Kindig M; Li Z; Kent R; Subit D
    Comput Methods Biomech Biomed Engin; 2015; 18(5):556-70. PubMed ID: 23947597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of rib fracture mechanisms based on the rib strain profiles in side and forward oblique impact.
    Leport T; Baudrit P; Potier P; Trosseille X; Lecuyer E; Vallancien G
    Stapp Car Crash J; 2011 Nov; 55():199-250. PubMed ID: 22869310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. THOR dummy chest deflection response in oblique and lateral far-side sled tests.
    Yoganandan N; Hauschild H; Humm J; Purushothaman Y; Pintar FA
    Traffic Inj Prev; 2019; 20(sup1):S32-S37. PubMed ID: 31381439
    [No Abstract]   [Full Text] [Related]  

  • 6. An analysis of possible movements of human upper rib cage.
    Saumarez RC
    J Appl Physiol (1985); 1986 Feb; 60(2):678-89. PubMed ID: 3949667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of pre-existing rib fractures on Global Human Body Models Consortium thorax response in frontal and oblique impact.
    Zaseck LW; Chen C; Hu J; Reed MP; Rupp J
    J Biomech; 2018 Mar; 69():54-63. PubMed ID: 29373114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of human rib cage behavior under dynamic loading.
    Vezin P; Berthet F
    Stapp Car Crash J; 2009 Nov; 53():93-125. PubMed ID: 20058552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head kinematics and shoulder biomechanics in shoulder impacts similar to pedestrian crashes--a THUMS study.
    Paas R; Davidsson J; Brolin K
    Traffic Inj Prev; 2015; 16(5):498-506. PubMed ID: 25287938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational biomechanical analysis to assess the trade-off between chest deflection and spine translation in side impact.
    Pipkorn B; Subit D; Donlon JP; Sunnevång C
    Traffic Inj Prev; 2014; 15 Suppl 1():S231-7. PubMed ID: 25307392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study.
    Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K
    Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation of the occupant kinematic response of the THUMS 50th-percentile male model relative to PMHS laboratory rollover tests.
    Poulard D; Zhang Q; Cochran JR; Gepner B; Kerrigan J
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():101-8. PubMed ID: 27586110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation patterns in WorldSID 50th percentile dummy instrumented with IR-TRACC and RibEye™ in different loading configurations.
    Kalra A; Greb J; Kim A
    Traffic Inj Prev; 2019; 20(5):515-520. PubMed ID: 31180730
    [No Abstract]   [Full Text] [Related]  

  • 14. The Contribution of Pre-impact Posture on Restrained Occupant Finite Element Model Response in Frontal Impact.
    Poulard D; Subit D; Nie B; Donlon JP; Kent RW
    Traffic Inj Prev; 2015; 16 Suppl 2():S87-95. PubMed ID: 26436247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro analysis of kinematics and elastostatics of the human rib cage during thoracic spinal movement for the validation of numerical models.
    Liebsch C; Graf N; Wilke HJ
    J Biomech; 2019 Sep; 94():147-157. PubMed ID: 31420155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vivo analysis of sternal angle, sternal and sternocostal kinematics in supine humans during breathing.
    Beyer B; Feipel V; Sholukha V; Chèze L; Van Sint Jan S
    J Biomech; 2017 Nov; 64():32-40. PubMed ID: 28916398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo thorax 3D modelling from costovertebral joint complex kinematics.
    Beyer B; Sholukha V; Dugailly PM; Rooze M; Moiseev F; Feipel V; Van Sint Jan S
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):434-8. PubMed ID: 24529962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing FE human body model rib geometry to population data.
    Holcombe SA; Agnew AM; Derstine B; Wang SC
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2227-2239. PubMed ID: 32444978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a computationally efficient full human body finite element model.
    Schwartz D; Guleyupoglu B; Koya B; Stitzel JD; Gayzik FS
    Traffic Inj Prev; 2015; 16 Suppl 1():S49-56. PubMed ID: 26027975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rib cage strain pattern as a function of chest loading configuration.
    Trosseille X; Baudrit P; Leport T; Vallancien G
    Stapp Car Crash J; 2008 Nov; 52():205-31. PubMed ID: 19085164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.