These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32307501)
1. Synthesis of monodisperse rod-shaped silica particles through biotemplating of surface-functionalized bacteria. Ping H; Poudel L; Xie H; Fang W; Zou Z; Zhai P; Wagermaier W; Fratzl P; Wang W; Wang H; O'Reilly P; Ching WY; Fu Z Nanoscale; 2020 Apr; 12(16):8732-8741. PubMed ID: 32307501 [TBL] [Abstract][Full Text] [Related]
2. A novel route for immobilization of proteins to silica particles incorporating silaffin domains. Nam DH; Won K; Kim YH; Sang BI Biotechnol Prog; 2009; 25(6):1643-9. PubMed ID: 19774662 [TBL] [Abstract][Full Text] [Related]
3. A sequence-function analysis of the silica precipitating silaffin R5 peptide. Lechner CC; Becker CF J Pept Sci; 2014 Feb; 20(2):152-8. PubMed ID: 25975421 [TBL] [Abstract][Full Text] [Related]
4. Citric acid functionalized silane coupling versus post-grafting strategy for dual pH and saline responsive delivery of cisplatin by Fe Abedi M; Abolmaali SS; Abedanzadeh M; Borandeh S; Samani SM; Tamaddon AM Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109922. PubMed ID: 31499936 [TBL] [Abstract][Full Text] [Related]
5. Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra. Roeters SJ; Mertig R; Lutz H; Roehrich A; Drobny G; Weidner T J Phys Chem Lett; 2021 Oct; 12(39):9657-9661. PubMed ID: 34586816 [TBL] [Abstract][Full Text] [Related]
6. Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles. Yan Y; Fu J; Wang T; Lu X Acta Biomater; 2017 Mar; 51():471-478. PubMed ID: 28131940 [TBL] [Abstract][Full Text] [Related]
8. Trimethylation of the R5 Silica-Precipitating Peptide Increases Silica Particle Size by Redirecting Orthosilicate Binding. Buckle EL; Sampath J; Michael N; Whedon SD; Leonen CJA; Pfaendtner J; Drobny GP; Chatterjee C Chembiochem; 2020 Nov; 21(22):3208-3211. PubMed ID: 32596917 [TBL] [Abstract][Full Text] [Related]
9. Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems. Hasany M; Taebnia N; Yaghmaei S; Shahbazi MA; Mehrali M; Dolatshahi-Pirouz A; Arpanaei A Colloids Surf B Biointerfaces; 2019 Oct; 182():110353. PubMed ID: 31336281 [TBL] [Abstract][Full Text] [Related]
10. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500 [TBL] [Abstract][Full Text] [Related]
11. Investigating the Role of Phosphorylation in the Binding of Silaffin Peptide R5 to Silica with Molecular Dynamics Simulations. Sprenger KG; Prakash A; Drobny G; Pfaendtner J Langmuir; 2018 Jan; 34(3):1199-1207. PubMed ID: 28981294 [TBL] [Abstract][Full Text] [Related]
12. In situ Formation of a Monodispersed Spherical Mesoporous Nanosilica-Torlon Hollow-Fiber Composite for Carbon Dioxide Capture. Rownaghi AA; Rezaei F; Labreche Y; Brennan PJ; Johnson JR; Li FS; Koros WJ ChemSusChem; 2015 Oct; 8(20):3439-50. PubMed ID: 26355795 [TBL] [Abstract][Full Text] [Related]
13. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. Braun K; Pochert A; Lindén M; Davoudi M; Schmidtchen A; Nordström R; Malmsten M J Colloid Interface Sci; 2016 Aug; 475():161-170. PubMed ID: 27174622 [TBL] [Abstract][Full Text] [Related]
15. Silica formation with nanofiber morphology via helical display of the silaffin R5 peptide on a filamentous bacteriophage. Song IW; Park H; Park JH; Kim H; Kim SH; Yi S; Jaworski J; Sang BI Sci Rep; 2017 Nov; 7(1):16212. PubMed ID: 29176625 [TBL] [Abstract][Full Text] [Related]
16. pH responsive selective protein adsorption by carboxylic acid functionalized large pore mesoporous silica nanoparticles SBA-1. Saikia D; Deka JR; Wu CE; Yang YC; Kao HM Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():344-356. PubMed ID: 30423716 [TBL] [Abstract][Full Text] [Related]
17. A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme. Choi O; Kim BC; An JH; Min K; Kim YH; Um Y; Oh MK; Sang BI Enzyme Microb Technol; 2011 Oct; 49(5):441-5. PubMed ID: 22112615 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical mesoporous silica nanotubes derived from natural cellulose substance. Zhang Y; Liu X; Huang J ACS Appl Mater Interfaces; 2011 Sep; 3(9):3272-5. PubMed ID: 21823655 [TBL] [Abstract][Full Text] [Related]
19. Peptides from diatoms and grasses harness phosphate ion binding to silica to help regulate biomaterial structure. Adiram-Filiba N; Geiger Y; Kumar S; Keinan-Adamsky K; Elbaum R; Goobes G Acta Biomater; 2020 Aug; 112():286-297. PubMed ID: 32434074 [TBL] [Abstract][Full Text] [Related]
20. Functionalized Mesoporous Silica via an Aminosilane Surfactant Ion Exchange Reaction: Controlled Scaffold Design and Nitric Oxide Release. Soto RJ; Yang L; Schoenfisch MH ACS Appl Mater Interfaces; 2016 Jan; 8(3):2220-31. PubMed ID: 26717238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]