These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32307647)

  • 1. Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions.
    Bonan CIDG; Biazi LE; Dionísio SR; Soares LB; Tramontina R; Sousa AS; de Oliveira Filho CA; Costa AC; Ienczak JL
    Bioprocess Biosyst Eng; 2020 Aug; 43(8):1509-1519. PubMed ID: 32307647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124.
    Su YK; Willis LB; Jeffries TW
    Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations.
    Bonan CIDG; Biazi LE; Santos SC; Soares LB; Dionísio SR; Hoffmam ZB; Costa AC; Ienczak JL
    Biotechnol Lett; 2019 Jul; 41(6-7):753-761. PubMed ID: 30963342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae.
    Cadete RM; de Las Heras AM; Sandström AG; Ferreira C; Gírio F; Gorwa-Grauslund MF; Rosa CA; Fonseca C
    Biotechnol Biofuels; 2016; 9():167. PubMed ID: 27499810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative assessment of fermentative capacity of different xylose-consuming yeasts.
    Veras HCT; Parachin NS; Almeida JRM
    Microb Cell Fact; 2017 Sep; 16(1):153. PubMed ID: 28903764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic xylose fermentation by Spathaspora passalidarum.
    Hou X
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):205-14. PubMed ID: 22124720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol.
    Campos VJ; Ribeiro LE; Albuini FM; de Castro AG; Fontes PP; da Silveira WB; Rosa CA; Fietto LG
    Braz J Microbiol; 2022 Jun; 53(2):977-990. PubMed ID: 35174461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of glucose on xylose metabolization by Spathaspora passalidarum.
    Ribeiro LE; Albuini FM; Castro AG; Campos VJ; de Souza GB; Mendonça JGP; Rosa CA; Mendes TAO; Santana MF; da Silveira WB; Fietto LG
    Fungal Genet Biol; 2021 Dec; 157():103624. PubMed ID: 34536506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of contamination with Lactobacillus fermentum I2 on ethanol production by Spathaspora passalidarum.
    Collograi KC; da Costa AC; Ienczak JL
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):5039-5050. PubMed ID: 30989252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Tolerance of Spathaspora passalidarum to Sugarcane Bagasse Hydrolysate for Ethanol Production from Xylose.
    Pacheco TF; Machado BRC; de Morais Júnior WG; Almeida JRM; Gonçalves SB
    Appl Biochem Biotechnol; 2021 Jul; 193(7):2182-2197. PubMed ID: 33682050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2.
    Rodrussamee N; Sattayawat P; Yamada M
    BMC Microbiol; 2018 Jul; 18(1):73. PubMed ID: 30005621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum.
    Long TM; Su YK; Headman J; Higbee A; Willis LB; Jeffries TW
    Appl Environ Microbiol; 2012 Aug; 78(16):5492-500. PubMed ID: 22636012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring xylose metabolism in non-conventional yeasts: kinetic characterization and product accumulation under different aeration conditions.
    Bolzico BC; Racca S; Khawam JN; Leonardi RJ; Tomassi AH; Benzzo MT; Comelli RN
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38936832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic profiling of Spathaspora passalidarum fermentations reveals mechanisms that overcome hemicellulose hydrolysate inhibitors.
    Lima CS; Neitzel T; Pirolla R; Dos Santos LV; Lenczak JL; Roberto IC; Rocha GJM
    Appl Microbiol Biotechnol; 2022 Jun; 106(11):4075-4089. PubMed ID: 35622124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion.
    Hou X; Yao S
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2591-601. PubMed ID: 22116630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Spathaspora passalidarum and recombinant Saccharomyces cerevisiae for integration of first- and second-generation ethanol production.
    Pereira IO; Dos Santos ÂA; Gonçalves DL; Purificação M; Guimarães NC; Tramontina R; Coutouné N; Zanella E; Matsushika A; Stambuk BU; Ienczak JL
    FEMS Yeast Res; 2021 Sep; 21(6):. PubMed ID: 34477865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving furfural tolerance in a xylose-fermenting yeast Spathaspora passalidarum CMUWF1-2 via adaptive laboratory evolution.
    Saengphing T; Sattayawat P; Kalawil T; Suwannarach N; Kumla J; Yamada M; Panbangred W; Rodrussamee N
    Microb Cell Fact; 2024 Mar; 23(1):80. PubMed ID: 38481222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345.
    Du C; Li Y; Zhao X; Pei X; Yuan W; Bai F; Jiang Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2845-2855. PubMed ID: 30706114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp. JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production.
    Trichez D; Steindorff AS; Soares CEVF; Formighieri EF; Almeida JRM
    FEMS Yeast Res; 2019 Jun; 19(4):. PubMed ID: 31073598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.