BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32307674)

  • 1. A novel 3D intestine barrier model to study the immune response upon exposure to microplastics.
    Lehner R; Wohlleben W; Septiadi D; Landsiedel R; Petri-Fink A; Rothen-Rutishauser B
    Arch Toxicol; 2020 Jul; 94(7):2463-2479. PubMed ID: 32307674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo.
    Stock V; Böhmert L; Lisicki E; Block R; Cara-Carmona J; Pack LK; Selb R; Lichtenstein D; Voss L; Henderson CJ; Zabinsky E; Sieg H; Braeuning A; Lampen A
    Arch Toxicol; 2019 Jul; 93(7):1817-1833. PubMed ID: 31139862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine.
    Busch M; Bredeck G; Kämpfer AAM; Schins RPF
    Environ Res; 2021 Feb; 193():110536. PubMed ID: 33253701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation.
    Barosova H; Chortarea S; Peikertova P; Clift MJD; Petri-Fink A; Kukutschova J; Rothen-Rutishauser B
    Arch Toxicol; 2018 Jul; 92(7):2339-2351. PubMed ID: 29748788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure.
    Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A
    Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of in vitro effects of patulin on intestinal epithelial and immune cells.
    Assunção R; Alvito P; Kleiveland CR; Lea TE
    Toxicol Lett; 2016 May; 250-251():47-56. PubMed ID: 27067107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells.
    Tada-Oikawa S; Ichihara G; Fukatsu H; Shimanuki Y; Tanaka N; Watanabe E; Suzuki Y; Murakami M; Izuoka K; Chang J; Wu W; Yamada Y; Ichihara S
    Int J Mol Sci; 2016 Apr; 17(4):576. PubMed ID: 27092499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro.
    Kasper JY; Hermanns MI; Cavelius C; Kraegeloh A; Jung T; Danzebrink R; Unger RE; Kirkpatrick CJ
    Int J Nanomedicine; 2016; 11():6353-6364. PubMed ID: 27994454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Inflammation-Triggered In Vitro "Leaky Gut" Model Using Caco-2/HT29-MTX-E12 Combined with Macrophage-like THP-1 Cells or Primary Human-Derived Macrophages.
    Le NPK; Altenburger MJ; Lamy E
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles.
    Endes C; Schmid O; Kinnear C; Mueller S; Camarero-Espinosa S; Vanhecke D; Foster EJ; Petri-Fink A; Rothen-Rutishauser B; Weder C; Clift MJ
    Part Fibre Toxicol; 2014 Sep; 11():40. PubMed ID: 25245637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium.
    Georgantzopoulou A; Serchi T; Cambier S; Leclercq CC; Renaut J; Shao J; Kruszewski M; Lentzen E; Grysan P; Eswara S; Audinot JN; Contal S; Ziebel J; Guignard C; Hoffmann L; Murk AJ; Gutleb AC
    Part Fibre Toxicol; 2016 Feb; 13():9. PubMed ID: 26888332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of mucosal integrity and epithelial transport function by concomitant anti-TNFα treatment in chronic DSS-induced colitis.
    Lenzen H; Qian J; Manns MP; Seidler U; Jörns A
    J Mol Med (Berl); 2018 Aug; 96(8):831-843. PubMed ID: 29967942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials.
    Susewind J; de Souza Carvalho-Wodarz C; Repnik U; Collnot EM; Schneider-Daum N; Griffiths GW; Lehr CM
    Nanotoxicology; 2016; 10(1):53-62. PubMed ID: 25738417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier.
    Durantie E; Barosova H; Drasler B; Rodriguez-Lorenzo L; Urban DA; Vanhecke D; Septiadi D; Hirschi-Ackermann L; Petri-Fink A; Rothen-Rutishauser B
    Biointerphases; 2018 Sep; 13(6):06D404. PubMed ID: 30205690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro.
    Leonard F; Collnot EM; Lehr CM
    Mol Pharm; 2010 Dec; 7(6):2103-19. PubMed ID: 20809575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
    Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P
    J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier.
    Domenech J; Hernández A; Rubio L; Marcos R; Cortés C
    Arch Toxicol; 2020 Sep; 94(9):2997-3012. PubMed ID: 32592077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microplastics and nanoplastics: Size, surface and dispersant - What causes the effect?
    Stock V; Böhmert L; Coban G; Tyra G; Vollbrecht ML; Voss L; Paul MB; Braeuning A; Sieg H
    Toxicol In Vitro; 2022 Apr; 80():105314. PubMed ID: 35033651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex intestinal and hepatic in vitro barrier models reveal information on uptake and impact of micro-, submicro- and nanoplastics.
    Paul MB; Böhmert L; Hsiao IL; Braeuning A; Sieg H
    Environ Int; 2023 Sep; 179():108172. PubMed ID: 37657408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.