These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32307755)

  • 1. Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review.
    Battistel A; Palagonia MS; Brogioli D; La Mantia F; Trócoli R
    Adv Mater; 2020 Jun; 32(23):e1905440. PubMed ID: 32307755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing.
    Flexer V; Baspineiro CF; Galli CI
    Sci Total Environ; 2018 Oct; 639():1188-1204. PubMed ID: 29929287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium recovery using electrochemical technologies: Advances and challenges.
    Wu L; Zhang C; Kim S; Hatton TA; Mo H; Waite TD
    Water Res; 2022 Aug; 221():118822. PubMed ID: 35834973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel hexacyanoferrate as suitable alternative to Ag for electrochemical lithium recovery.
    Trócoli R; Battistel A; La Mantia F
    ChemSusChem; 2015 Aug; 8(15):2514-9. PubMed ID: 26138094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium recovery by means of electrochemical ion pumping: a comparison between salt capturing and selective exchange.
    Trocoli R; Bidhendi GK; La Mantia F
    J Phys Condens Matter; 2016 Mar; 28(11):114005. PubMed ID: 26910577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system.
    Kim S; Lee J; Kang JS; Jo K; Kim S; Sung YE; Yoon J
    Chemosphere; 2015 Apr; 125():50-6. PubMed ID: 25681679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comprehensive Membrane Process for Preparing Lithium Carbonate from High Mg/Li Brine.
    Xu W; Liu D; He L; Zhao Z
    Membranes (Basel); 2020 Nov; 10(12):. PubMed ID: 33256217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in the Lithium Recovery from Water Resources: From Passive to Electrochemical Methods.
    Baudino L; Santos C; Pirri CF; La Mantia F; Lamberti A
    Adv Sci (Weinh); 2022 Sep; 9(27):e2201380. PubMed ID: 35896956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage.
    Wei Q; Xiong F; Tan S; Huang L; Lan EH; Dunn B; Mai L
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28106303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity of a lithium-recovery process based on LiFePO4.
    Trócoli R; Battistel A; Mantia FL
    Chemistry; 2014 Aug; 20(32):9888-91. PubMed ID: 25043970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments.
    Mossali E; Picone N; Gentilini L; Rodrìguez O; Pérez JM; Colledani M
    J Environ Manage; 2020 Jun; 264():110500. PubMed ID: 32250918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of a double-slope solar still for the concentration of lithium rich brines with concomitant fresh water recovery.
    Baspineiro CF; Franco J; Flexer V
    Sci Total Environ; 2021 Oct; 791():148192. PubMed ID: 34119795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and Facile Electrochemical Process for the Production of High-Quality Lithium Hexafluorophosphate Electrolyte.
    Zhao A; Zhong F; Feng X; Chen W; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32771-32777. PubMed ID: 32584019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-osmosis-Coupled Thermally Regenerative Electrochemical Cycle for Efficient Lithium Extraction.
    Yuan Z; Yu Y; Wei L; Wang C; Zhong X; Sui X; Yu Z; Han DS; Shon H; Chen Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6276-6285. PubMed ID: 33497188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium Harvesting from the Most Abundant Primary and Secondary Sources: A Comparative Study on Conventional and Membrane Technologies.
    Butt FS; Lewis A; Chen T; Mazlan NA; Wei X; Hayer J; Chen S; Han J; Yang Y; Yang S; Huang Y
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and selective lithium recovery from desalination brine using an electrochemical system.
    Kim S; Joo H; Moon T; Kim SH; Yoon J
    Environ Sci Process Impacts; 2019 Apr; 21(4):667-676. PubMed ID: 30799481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy flow analysis of laboratory scale lithium-ion battery cell production.
    Erakca M; Baumann M; Bauer W; de Biasi L; Hofmann J; Bold B; Weil M
    iScience; 2021 May; 24(5):102437. PubMed ID: 33997708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.