These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Operando Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of the NO Reduction Reaction over Rhodium-Based Catalysts. Ballotin FC; Hartman T; Koek J; Geitenbeek RG; Weckhuysen BM Chemphyschem; 2021 Aug; 22(15):1595-1602. PubMed ID: 34133834 [TBL] [Abstract][Full Text] [Related]
3. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Hess C Chem Soc Rev; 2021 Mar; 50(5):3519-3564. PubMed ID: 33501926 [TBL] [Abstract][Full Text] [Related]
5. Mapping Temperature Heterogeneities during Catalytic CO Jacobs TS; van Swieten TP; Vonk SJW; Bosman IP; Melcherts AEM; Janssen BC; Janssens JCL; Monai M; Meijerink A; Rabouw FT; van der Stam W; Weckhuysen BM ACS Nano; 2023 Oct; 17(20):20053-20061. PubMed ID: 37797269 [TBL] [Abstract][Full Text] [Related]
6. In situ and operando study of catalysts during high-temperature high-pressure catalysis in a fixed-bed plug flow reactor with x-ray absorption spectroscopy. Tang Y; Nguyen L; Li Y; Tao F Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37255372 [TBL] [Abstract][Full Text] [Related]
7. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178 [TBL] [Abstract][Full Text] [Related]
8. In Situ Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Nickel-Catalyzed Hydrogenation Reactions. Wondergem CS; Kromwijk JJG; Slagter M; Vrijburg WL; Hensen EJM; Monai M; Vogt C; Weckhuysen BM Chemphyschem; 2020 Apr; 21(7):625-632. PubMed ID: 31981395 [TBL] [Abstract][Full Text] [Related]
9. Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates. Rupprechter G Small; 2021 Jul; 17(27):e2004289. PubMed ID: 33694320 [TBL] [Abstract][Full Text] [Related]
10. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Zhang H; Wang C; Sun HL; Fu G; Chen S; Zhang YJ; Chen BH; Anema JR; Yang ZL; Li JF; Tian ZQ Nat Commun; 2017 May; 8():15447. PubMed ID: 28537269 [TBL] [Abstract][Full Text] [Related]
11. Application of Raman Spectroscopy to Working Gas Sensors: From Elger AK; Hess C Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31757112 [TBL] [Abstract][Full Text] [Related]
12. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements. Gao W; Hood ZD; Chi M Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240 [TBL] [Abstract][Full Text] [Related]
13. From Atomic-Level Synthesis to Device-Scale Reactors: A Multiscale Approach to Water Electrolysis. Du X; Qi M; Wang Y Acc Chem Res; 2024 May; 57(9):1298-1309. PubMed ID: 38597422 [TBL] [Abstract][Full Text] [Related]
14. Innovative Nanosensor for Disease Diagnosis. Kim SJ; Choi SJ; Jang JS; Cho HJ; Kim ID Acc Chem Res; 2017 Jul; 50(7):1587-1596. PubMed ID: 28481075 [TBL] [Abstract][Full Text] [Related]
15. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144 [TBL] [Abstract][Full Text] [Related]
16. Bifunctional Europium for Operando Catalyst Thermometry in an Exothermic Chemical Reaction. Terlingen BJP; Arens T; van Swieten TP; Rabouw FT; Prins PT; de Beer MM; Meijerink A; Ahr MP; Hutter EM; van Lare CEJ; Weckhuysen BM Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202211991. PubMed ID: 36328981 [TBL] [Abstract][Full Text] [Related]
17. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand. Ziemba M; Schilling C; Ganduglia-Pirovano MV; Hess C Acc Chem Res; 2021 Jul; 54(13):2884-2893. PubMed ID: 34137246 [TBL] [Abstract][Full Text] [Related]
18. Operando chemistry of catalyst surfaces during catalysis. Dou J; Sun Z; Opalade AA; Wang N; Fu W; Tao FF Chem Soc Rev; 2017 Apr; 46(7):2001-2027. PubMed ID: 28358410 [TBL] [Abstract][Full Text] [Related]
19. In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Wang YH; Wei J; Radjenovic P; Tian ZQ; Li JF Anal Chem; 2019 Feb; 91(3):1675-1685. PubMed ID: 30629409 [TBL] [Abstract][Full Text] [Related]