These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 32308015)
1. A Hierarchical Bayesian Mixture Model Approach for Analysis of Resting-State Functional Brain Connectivity: An Alternative to Thresholding. Gorbach T; Lundquist A; de Luna X; Nyberg L; Salami A Brain Connect; 2020 Jun; 10(5):202-211. PubMed ID: 32308015 [TBL] [Abstract][Full Text] [Related]
2. Predicting individual brain functional connectivity using a Bayesian hierarchical model. Dai T; Guo Y; Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121 [TBL] [Abstract][Full Text] [Related]
3. Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics. Gotts SJ; Gilmore AW; Martin A Neuroimage; 2020 Jan; 205():116289. PubMed ID: 31629827 [TBL] [Abstract][Full Text] [Related]
4. Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage. Mejia AF; Nebel MB; Barber AD; Choe AS; Pekar JJ; Caffo BS; Lindquist MA Neuroimage; 2018 May; 172():478-491. PubMed ID: 29391241 [TBL] [Abstract][Full Text] [Related]
5. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks. Colclough GL; Woolrich MW; Harrison SJ; Rojas López PA; Valdes-Sosa PA; Smith SM Neuroimage; 2018 Sep; 178():370-384. PubMed ID: 29746906 [TBL] [Abstract][Full Text] [Related]
12. Test-retest reliability of dynamic functional connectivity in resting state fMRI. Zhang C; Baum SA; Adduru VR; Biswal BB; Michael AM Neuroimage; 2018 Dec; 183():907-918. PubMed ID: 30120987 [TBL] [Abstract][Full Text] [Related]
13. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines. Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215 [TBL] [Abstract][Full Text] [Related]
14. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets. Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720 [TBL] [Abstract][Full Text] [Related]
15. Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates. Hinne M; Janssen RJ; Heskes T; van Gerven MA PLoS Comput Biol; 2015 Nov; 11(11):e1004534. PubMed ID: 26540089 [TBL] [Abstract][Full Text] [Related]
16. Time-dependence of graph theory metrics in functional connectivity analysis. Chiang S; Cassese A; Guindani M; Vannucci M; Yeh HJ; Haneef Z; Stern JM Neuroimage; 2016 Jan; 125():601-615. PubMed ID: 26518632 [TBL] [Abstract][Full Text] [Related]
17. A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data. Chen S; Bowman FD; Mayberg HS Biometrics; 2016 Jun; 72(2):596-605. PubMed ID: 26501687 [TBL] [Abstract][Full Text] [Related]
18. Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations. van den Heuvel MP; de Lange SC; Zalesky A; Seguin C; Yeo BTT; Schmidt R Neuroimage; 2017 May; 152():437-449. PubMed ID: 28167349 [TBL] [Abstract][Full Text] [Related]
19. Assessing dynamic functional connectivity in heterogeneous samples. Lehmann BCL; White SR; Henson RN; Cam-Can ; Geerligs L Neuroimage; 2017 Aug; 157():635-647. PubMed ID: 28578129 [TBL] [Abstract][Full Text] [Related]
20. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state. Carbonell F; Bellec P; Shmuel A Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]