These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32308015)

  • 1. A Hierarchical Bayesian Mixture Model Approach for Analysis of Resting-State Functional Brain Connectivity: An Alternative to Thresholding.
    Gorbach T; Lundquist A; de Luna X; Nyberg L; Salami A
    Brain Connect; 2020 Jun; 10(5):202-211. PubMed ID: 32308015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics.
    Gotts SJ; Gilmore AW; Martin A
    Neuroimage; 2020 Jan; 205():116289. PubMed ID: 31629827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage.
    Mejia AF; Nebel MB; Barber AD; Choe AS; Pekar JJ; Caffo BS; Lindquist MA
    Neuroimage; 2018 May; 172():478-491. PubMed ID: 29391241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.
    Colclough GL; Woolrich MW; Harrison SJ; Rojas López PA; Valdes-Sosa PA; Smith SM
    Neuroimage; 2018 Sep; 178():370-384. PubMed ID: 29746906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thresholding functional connectomes by means of mixture modeling.
    Bielczyk NZ; Walocha F; Ebel PW; Haak KV; Llera A; Buitelaar JK; Glennon JC; Beckmann CF
    Neuroimage; 2018 May; 171():402-414. PubMed ID: 29309896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse Graphical Models for Functional Connectivity Networks: Best Methods and the Autocorrelation Issue.
    Zhu Y; Cribben I
    Brain Connect; 2018 Apr; 8(3):139-165. PubMed ID: 29634321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structurally-informed Bayesian functional connectivity analysis.
    Hinne M; Ambrogioni L; Janssen RJ; Heskes T; van Gerven MA
    Neuroimage; 2014 Feb; 86():294-305. PubMed ID: 24121202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic effective connectivity in resting state fMRI.
    Park HJ; Friston KJ; Pae C; Park B; Razi A
    Neuroimage; 2018 Oct; 180(Pt B):594-608. PubMed ID: 29158202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutual connectivity analysis of resting-state functional MRI data with local models.
    DSouza AM; Abidin AZ; Chockanathan U; Schifitto G; Wismüller A
    Neuroimage; 2018 Sep; 178():210-223. PubMed ID: 29777828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian networks for fMRI: a primer.
    Mumford JA; Ramsey JD
    Neuroimage; 2014 Feb; 86():573-82. PubMed ID: 24140939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test-retest reliability of dynamic functional connectivity in resting state fMRI.
    Zhang C; Baum SA; Adduru VR; Biswal BB; Michael AM
    Neuroimage; 2018 Dec; 183():907-918. PubMed ID: 30120987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines.
    Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J
    Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.
    Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM
    Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates.
    Hinne M; Janssen RJ; Heskes T; van Gerven MA
    PLoS Comput Biol; 2015 Nov; 11(11):e1004534. PubMed ID: 26540089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependence of graph theory metrics in functional connectivity analysis.
    Chiang S; Cassese A; Guindani M; Vannucci M; Yeh HJ; Haneef Z; Stern JM
    Neuroimage; 2016 Jan; 125():601-615. PubMed ID: 26518632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data.
    Chen S; Bowman FD; Mayberg HS
    Biometrics; 2016 Jun; 72(2):596-605. PubMed ID: 26501687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations.
    van den Heuvel MP; de Lange SC; Zalesky A; Seguin C; Yeo BTT; Schmidt R
    Neuroimage; 2017 May; 152():437-449. PubMed ID: 28167349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing dynamic functional connectivity in heterogeneous samples.
    Lehmann BCL; White SR; Henson RN; Cam-Can ; Geerligs L
    Neuroimage; 2017 Aug; 157():635-647. PubMed ID: 28578129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.