These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32308255)

  • 1. GeSe: Optical Spectroscopy and Theoretical Study of a van der Waals Solar Absorber.
    Murgatroyd PAE; Smiles MJ; Savory CN; Shalvey TP; Swallow JEN; Fleck N; Robertson CM; Jäckel F; Alaria J; Major JD; Scanlon DO; Veal TD
    Chem Mater; 2020 Apr; 32(7):3245-3253. PubMed ID: 32308255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The high power conversion efficiency of a two-dimensional GeSe/AsP van der Waals heterostructure for solar energy cells.
    Liu HY; Yang CL; Wang MS; Ma XG
    Phys Chem Chem Phys; 2021 Mar; 23(10):6042-6050. PubMed ID: 33683239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic Interlayer Exciton in GeSe/SnS van der Waals Heterostructure.
    Maity N; Srivastava P; Mishra H; Shinde R; Singh AK
    J Phys Chem Lett; 2021 Feb; 12(7):1765-1771. PubMed ID: 33570941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-standing large, ultrathin germanium selenide van der Waals ribbons by combined vapor-liquid-solid growth and edge attachment.
    Sutter E; French JS; Sutter P
    Nanoscale; 2022 Apr; 14(16):6195-6201. PubMed ID: 35393984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible to Short-Wave Infrared Photodetectors Based on ZrGeTe
    Yan W; Johnson BC; Balendhran S; Cadusch J; Yan D; Michel JI; Wang S; Zheng T; Crozier K; Bullock J
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45881-45889. PubMed ID: 34523918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoresponse of Natural van der Waals Heterostructures.
    Ray K; Yore AE; Mou T; Jha S; Smithe KKH; Wang B; Pop E; Newaz AKM
    ACS Nano; 2017 Jun; 11(6):6024-6030. PubMed ID: 28485958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and Indirect Interlayer Excitons in a van der Waals Heterostructure of hBN/WS
    Okada M; Kutana A; Kureishi Y; Kobayashi Y; Saito Y; Saito T; Watanabe K; Taniguchi T; Gupta S; Miyata Y; Yakobson BI; Shinohara H; Kitaura R
    ACS Nano; 2018 Mar; 12(3):2498-2505. PubMed ID: 29481065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-Field-Induced Room-Temperature Antiferroelectric-Ferroelectric Phase Transition in van der Waals Layered GeSe.
    Guan Z; Zhao Y; Wang X; Zhong N; Deng X; Zheng Y; Wang J; Xu D; Ma R; Yue F; Cheng Y; Huang R; Xiang P; Wei Z; Chu J; Duan C
    ACS Nano; 2022 Jan; 16(1):1308-1317. PubMed ID: 34978807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-dimensional α-As/α-AsP van der Waals heterostructure for photovoltaic applications.
    Mao Y; Qin C; Wang J; Yuan J
    Phys Chem Chem Phys; 2022 Jul; 24(26):16058-16064. PubMed ID: 35735012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exceptional Thermoelectric Properties of Bilayer GeSe: First Principles Calculation.
    Fan Q; Zhang W; Qing H; Yang J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1D/2D van der Waals Heterojunctions Composed of Carbon Nanotubes and a GeSe Monolayer.
    Mao Y; Guo Z; Yuan J; Sun T
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34198617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasiparticle band structures and optical properties of magnesium fluoride.
    Yi Z; Jia R
    J Phys Condens Matter; 2012 Feb; 24(8):085602. PubMed ID: 22277330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optoelectronic properties in monolayers of hybridized graphene and hexagonal boron nitride.
    Bernardi M; Palummo M; Grossman JC
    Phys Rev Lett; 2012 Jun; 108(22):226805. PubMed ID: 23003640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electric field modulation of electronic properties in a type-II phosphorene/PbI
    Wei Y; Wang F; Zhang W; Zhang X
    Phys Chem Chem Phys; 2019 Apr; 21(15):7765-7772. PubMed ID: 30916052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Gaps and Excitonic Properties of 2D Materials by Hybrid Time-Dependent Density Functional Theory: Evidences for Monolayers and Prospects for van der Waals Heterostructures.
    Ketolainen T; Macháčová N; Karlický F
    J Chem Theory Comput; 2020 Sep; 16(9):5876-5883. PubMed ID: 32786893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials.
    Harb M; Masih D; Takanabe K
    Phys Chem Chem Phys; 2014 Sep; 16(34):18198-204. PubMed ID: 25055167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoacoustic and modulated reflectance studies of indirect and direct band gap in van der Waals crystals.
    Zelewski SJ; Kudrawiec R
    Sci Rep; 2017 Nov; 7(1):15365. PubMed ID: 29133933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GeC/GaN vdW Heterojunctions: A Promising Photocatalyst for Overall Water Splitting and Solar Energy Conversion.
    Lou P; Lee JY
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14289-14297. PubMed ID: 32126761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In
    Li W; Cai XF; Valdes N; Wang T; Shafarman W; Wei SH; Janotti A
    J Phys Chem Lett; 2022 Dec; 13(51):12026-12031. PubMed ID: 36541824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures.
    Idrees M; Din HU; Ali R; Rehman G; Hussain T; Nguyen CV; Ahmad I; Amin B
    Phys Chem Chem Phys; 2019 Aug; 21(34):18612-18621. PubMed ID: 31414085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.