These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32308256)

  • 1. Big in Japan: Regularizing Networks for Solving Inverse Problems.
    Schwab J; Antholzer S; Haltmeier M
    J Math Imaging Vis; 2020; 62(3):445-455. PubMed ID: 32308256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discretization of Learned NETT Regularization for Solving Inverse Problems.
    Antholzer S; Haltmeier M
    J Imaging; 2021 Nov; 7(11):. PubMed ID: 34821870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
    Rastogi A; Yalavarthy PK
    Med Phys; 2021 May; 48(5):2214-2229. PubMed ID: 33525049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total Deep Variation: A Stable Regularization Method for Inverse Problems.
    Kobler E; Effland A; Kunisch K; Pock T
    IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):9163-9180. PubMed ID: 34727026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergence Behavior of DNNs with Mutual-Information-Based Regularization.
    Jónsson H; Cherubini G; Eleftheriou E
    Entropy (Basel); 2020 Jun; 22(7):. PubMed ID: 33286499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural networks-based regularization for large-scale medical image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kachelrieß M; Dewey M; Wald C; Kolbitsch C
    Phys Med Biol; 2020 Jul; 65(13):135003. PubMed ID: 32492660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regularization of deep neural networks with spectral dropout.
    Khan SH; Hayat M; Porikli F
    Neural Netw; 2019 Feb; 110():82-90. PubMed ID: 30504041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid ISTA: Unfolding ISTA With Convergence Guarantees Using Free-Form Deep Neural Networks.
    Zheng Z; Dai W; Xue D; Li C; Zou J; Xiong H
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3226-3244. PubMed ID: 35503824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Hallucinations in Tomographic Image Reconstruction.
    Bhadra S; Kelkar VA; Brooks FJ; Anastasio MA
    IEEE Trans Med Imaging; 2021 Nov; 40(11):3249-3260. PubMed ID: 33950837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media.
    Yuliansyah DR; Pan MC; Hsu YF
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural network for a class of sparse optimization with L
    Wei Z; Li Q; Wei J; Bian W
    Neural Netw; 2022 Jul; 151():211-221. PubMed ID: 35439665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambiguity in Solving Imaging Inverse Problems with Deep-Learning-Based Operators.
    Evangelista D; Morotti E; Piccolomini EL; Nagy J
    J Imaging; 2023 Jun; 9(7):. PubMed ID: 37504810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks.
    Karnakov P; Litvinov S; Koumoutsakos P
    PNAS Nexus; 2024 Jan; 3(1):pgae005. PubMed ID: 38250513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonconvex Sparse Regularization for Deep Neural Networks and Its Optimality.
    Ohn I; Kim Y
    Neural Comput; 2022 Jan; 34(2):476-517. PubMed ID: 34758482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regularization, Bayesian Inference, and Machine Learning Methods for Inverse Problems.
    Mohammad-Djafari A
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implicit Solutions of the Electrical Impedance Tomography Inverse Problem in the Continuous Domain with Deep Neural Networks.
    Strauss T; Khan T
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax.
    Ivanenko M; Smolik WT; Wanta D; Midura M; Wróblewski P; Hou X; Yan X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regularizing Deep Neural Networks by Enhancing Diversity in Feature Extraction.
    Ayinde BO; Inanc T; Zurada JM
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2650-2661. PubMed ID: 30624232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of recurrent neural networks for solving constrained least absolute deviation problems.
    Hu X; Sun C; Zhang B
    IEEE Trans Neural Netw; 2010 Jul; 21(7):1073-86. PubMed ID: 20562048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSFG: Stochastically Scaling Features and Gradients for Regularizing Graph Convolutional Networks.
    Zhang H; Xu M; Zhang G; Niwa K
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):2223-2234. PubMed ID: 35867359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.