These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32308256)

  • 21. Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms.
    Hosseini SAH; Yaman B; Moeller S; Hong M; Akçakaya M
    IEEE J Sel Top Signal Process; 2020 Oct; 14(6):1280-1291. PubMed ID: 33747334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constrained and unconstrained deep image prior optimization models with automatic regularization.
    Cascarano P; Franchini G; Kobler E; Porta F; Sebastiani A
    Comput Optim Appl; 2023; 84(1):125-149. PubMed ID: 35909881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep learning for photoacoustic tomography from sparse data.
    Antholzer S; Haltmeier M; Schwab J
    Inverse Probl Sci Eng; 2019; 27(7):987-1005. PubMed ID: 31057659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new recurrent neural network for solving convex quadratic programming problems with an application to the k-winners-take-all problem.
    Hu X; Zhang B
    IEEE Trans Neural Netw; 2009 Apr; 20(4):654-64. PubMed ID: 19228555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilizing deep tomographic reconstruction: Part B. Convergence analysis and adversarial attacks.
    Wu W; Hu D; Cong W; Shan H; Wang S; Niu C; Yan P; Yu H; Vardhanabhuti V; Wang G
    Patterns (N Y); 2022 May; 3(5):100475. PubMed ID: 35607615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.
    Li S; Li Y; Wang Z
    Neural Netw; 2013 Mar; 39():27-39. PubMed ID: 23334164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sparse-view and limited-angle CT reconstruction with untrained networks and deep image prior.
    Shu Z; Entezari A
    Comput Methods Programs Biomed; 2022 Nov; 226():107167. PubMed ID: 36272306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction.
    Kandarpa VSS; Perelli A; Bousse A; Visvikis D
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738249
    [No Abstract]   [Full Text] [Related]  

  • 30. Convergence of deep convolutional neural networks.
    Xu Y; Zhang H
    Neural Netw; 2022 Sep; 153():553-563. PubMed ID: 35839599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A k-space-to-image reconstruction network for MRI using recurrent neural network.
    Oh C; Kim D; Chung JY; Han Y; Park H
    Med Phys; 2021 Jan; 48(1):193-203. PubMed ID: 33128235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Momentum-Net: Fast and Convergent Iterative Neural Network for Inverse Problems.
    Chun IY; Huang Z; Lim H; Fessler JA
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):4915-4931. PubMed ID: 32750839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Convergence Analysis of Novel Fractional-Order Backpropagation Neural Networks With Regularization Terms.
    Ma M; Yang J
    IEEE Trans Cybern; 2024 May; 54(5):3039-3050. PubMed ID: 37028357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solving Inverse Problems With Deep Neural Networks - Robustness Included?
    Genzel M; Macdonald J; Marz M
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):1119-1134. PubMed ID: 35119999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness.
    Jin P; Lu L; Tang Y; Karniadakis GE
    Neural Netw; 2020 Oct; 130():85-99. PubMed ID: 32650153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverting feedforward neural networks using linear and nonlinear programming.
    Lu BL; Kita H; Nishikawa Y
    IEEE Trans Neural Netw; 1999; 10(6):1271-90. PubMed ID: 18252630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Tikhonov regularization for function approximation by neural networks.
    Burger M; Neubauer A
    Neural Netw; 2003 Jan; 16(1):79-90. PubMed ID: 12576108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A stochastic regularized second-order iterative scheme for optimal control and inverse problems in stochastic partial differential equations.
    Dambrine M; Khan AA; Sama M
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2236):20210352. PubMed ID: 36154473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic medical imaging as a partial inverse problem.
    Greensite F
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():1014-7. PubMed ID: 17271853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning and convergence analysis of neural-type structured networks.
    Polycarpou MM; Ioannou PA
    IEEE Trans Neural Netw; 1992; 3(1):39-50. PubMed ID: 18276404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.