BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

633 related articles for article (PubMed ID: 32308627)

  • 1. Comparative Effectiveness of High-Intensity Interval Training and Moderate-Intensity Continuous Training for Cardiometabolic Risk Factors and Cardiorespiratory Fitness in Childhood Obesity: A Meta-Analysis of Randomized Controlled Trials.
    Liu J; Zhu L; Su Y
    Front Physiol; 2020; 11():214. PubMed ID: 32308627
    [No Abstract]   [Full Text] [Related]  

  • 2. Effectiveness of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training in Hypertensive Patients: a Systematic Review and Meta-Analysis.
    Leal JM; Galliano LM; Del Vecchio FB
    Curr Hypertens Rep; 2020 Mar; 22(3):26. PubMed ID: 32125550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of High-Intensity Interval Training and Moderate-Intensity Continuous Training on Cardiometabolic Risk Factors in Overweight and Obesity Children and Adolescents: A Meta-Analysis of Randomized Controlled Trials.
    Cao M; Tang Y; Li S; Zou Y
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831659
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of High-Intensity Interval vs. Moderate-Intensity Continuous Training on Cardiac Rehabilitation in Patients With Cardiovascular Disease: A Systematic Review and Meta-Analysis.
    Yue T; Wang Y; Liu H; Kong Z; Qi F
    Front Cardiovasc Med; 2022; 9():845225. PubMed ID: 35282360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis.
    Sultana RN; Sabag A; Keating SE; Johnson NA
    Sports Med; 2019 Nov; 49(11):1687-1721. PubMed ID: 31401727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training On Blood Pressure in Adults with Pre- to Established Hypertension: A Systematic Review and Meta-Analysis of Randomized Trials.
    Costa EC; Hay JL; Kehler DS; Boreskie KF; Arora RC; Umpierre D; Szwajcer A; Duhamel TA
    Sports Med; 2018 Sep; 48(9):2127-2142. PubMed ID: 29949110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of school-based high-intensity interval training on body composition, cardiorespiratory fitness and cardiometabolic markers in adolescent boys with obesity: a randomized controlled trial.
    Meng C; Yucheng T; Shu L; Yu Z
    BMC Pediatr; 2022 Mar; 22(1):112. PubMed ID: 35232402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of sprint interval training
    Liang W; Liu C; Yan X; Hou Y; Yang G; Dai J; Wang S
    PeerJ; 2024; 12():e17064. PubMed ID: 38495758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Fat Loss and Cardiorespiratory Fitness in the Young and Middle-Aged a Systematic Review and Meta-Analysis.
    Guo Z; Li M; Cai J; Gong W; Liu Y; Liu Z
    Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the effects of high-intensity interval and moderate-intensity continuous training on inflammatory markers, cardiorespiratory fitness, and quality of life in breast cancer patients.
    Isanejad A; Nazari S; Gharib B; Motlagh AG
    J Sport Health Sci; 2023 Nov; 12(6):674-689. PubMed ID: 37423313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Study of Health Efficacy Indicators in Subjects with T2DM Applying Power Cycling to 12 Weeks of Low-Volume High-Intensity Interval Training and Moderate-Intensity Continuous Training.
    Li J; Cheng W; Ma H
    J Diabetes Res; 2022; 2022():9273830. PubMed ID: 35071605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of high-intensity interval and continuous moderate aerobic training on fitness and health markers of older adults: A systematic review and meta-analysis.
    Oliveira A; Fidalgo A; Farinatti P; Monteiro W
    Arch Gerontol Geriatr; 2024 Sep; 124():105451. PubMed ID: 38718488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIIT is superior than MICT on cardiometabolic health during training and detraining.
    Gripp F; Nava RC; Cassilhas RC; Esteves EA; Magalhães COD; Dias-Peixoto MF; de Castro Magalhães F; Amorim FT
    Eur J Appl Physiol; 2021 Jan; 121(1):159-172. PubMed ID: 33000332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis.
    Liu JX; Zhu L; Li PJ; Li N; Xu YB
    Aging Clin Exp Res; 2019 May; 31(5):575-593. PubMed ID: 30097811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of high-intensity interval training compared to moderate-intensity continuous training on maximal oxygen consumption and blood pressure in healthy men: A randomized controlled trial.
    Arboleda-Serna VH; Feito Y; Patiño-Villada FA; Vargas-Romero AV; Arango-Vélez EF
    Biomedica; 2019 Sep; 39(3):524-536. PubMed ID: 31584766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of high-intensity interval training and moderate-intensity continuous training on cardiovascular risk factors in adolescents: Systematic review and meta-analysis of randomized controlled trials.
    Wang Y; Wang S; Meng X; Zhou H
    Physiol Behav; 2024 Mar; 275():114459. PubMed ID: 38190958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of high-intensity interval training on cardiometabolic risk factors in childhood obesity: a meta-analysis.
    Zhu L; Liu J; Yu Y; Tian Z
    J Sports Med Phys Fitness; 2021 May; 61(5):743-752. PubMed ID: 33975429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis.
    Hannan AL; Hing W; Simas V; Climstein M; Coombes JS; Jayasinghe R; Byrnes J; Furness J
    Open Access J Sports Med; 2018; 9():1-17. PubMed ID: 29416382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in patients with hypertension: A meta-analysis.
    Li L; Liu X; Shen F; Xu N; Li Y; Xu K; Li J; Liu Y
    Medicine (Baltimore); 2022 Dec; 101(50):e32246. PubMed ID: 36550888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of high Intensity interval training versus moderate intensity continuous training on arterial stiffness and 24h blood pressure responses: A systematic review and meta-analysis.
    Way KL; Sultana RN; Sabag A; Baker MK; Johnson NA
    J Sci Med Sport; 2019 Apr; 22(4):385-391. PubMed ID: 30803498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.