These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 32308661)
1. SNARE Complexity in Arbuscular Mycorrhizal Symbiosis. Huisman R; Hontelez J; Bisseling T; Limpens E Front Plant Sci; 2020; 11():354. PubMed ID: 32308661 [TBL] [Abstract][Full Text] [Related]
2. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis. Huisman R; Hontelez J; Mysore KS; Wen J; Bisseling T; Limpens E New Phytol; 2016 Sep; 211(4):1338-51. PubMed ID: 27110912 [TBL] [Abstract][Full Text] [Related]
3. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Ivanov S; Fedorova EE; Limpens E; De Mita S; Genre A; Bonfante P; Bisseling T Proc Natl Acad Sci U S A; 2012 May; 109(21):8316-21. PubMed ID: 22566631 [TBL] [Abstract][Full Text] [Related]
4. EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis. Zhang X; Pumplin N; Ivanov S; Harrison MJ Curr Biol; 2015 Aug; 25(16):2189-95. PubMed ID: 26234213 [TBL] [Abstract][Full Text] [Related]
5. Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein. Timmers KI; Clark AE; Omatsu-Kanbe M; Whiteheart SW; Bennett MK; Holman GD; Cushman SW Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):429-36. PubMed ID: 8973549 [TBL] [Abstract][Full Text] [Related]
6. The Rice Qa-SNAREs in SYP13 Subfamily Are Involved in Regulating Arbuscular Mycorrhizal Symbiosis and Seed Fertility. Liu YN; Liu CC; Guo R; Tian L; Cheng JF; Wu YN; Wang D; Wang B Front Plant Sci; 2022; 13():898286. PubMed ID: 35665185 [TBL] [Abstract][Full Text] [Related]
7. The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells. Uhe M; Hogekamp C; Hartmann RM; Hohnjec N; Küster H PLoS One; 2018; 13(1):e0191841. PubMed ID: 29370287 [TBL] [Abstract][Full Text] [Related]
8. A symbiotic SNARE protein generated by alternative termination of transcription. Pan H; Oztas O; Zhang X; Wu X; Stonoha C; Wang E; Wang B; Wang D Nat Plants; 2016 Jan; 2():15197. PubMed ID: 27249189 [TBL] [Abstract][Full Text] [Related]
9. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Javot H; Penmetsa RV; Breuillin F; Bhattarai KK; Noar RD; Gomez SK; Zhang Q; Cook DR; Harrison MJ Plant J; 2011 Dec; 68(6):954-65. PubMed ID: 21848683 [TBL] [Abstract][Full Text] [Related]
10. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
11. RiCRN1, a Crinkler Effector From the Arbuscular Mycorrhizal Fungus Voß S; Betz R; Heidt S; Corradi N; Requena N Front Microbiol; 2018; 9():2068. PubMed ID: 30233541 [TBL] [Abstract][Full Text] [Related]
12. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Galli T; Zahraoui A; Vaidyanathan VV; Raposo G; Tian JM; Karin M; Niemann H; Louvard D Mol Biol Cell; 1998 Jun; 9(6):1437-48. PubMed ID: 9614185 [TBL] [Abstract][Full Text] [Related]
13. A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Li C; Zhou J; Wang X; Liao H Plant Cell Environ; 2019 Jun; 42(6):2015-2027. PubMed ID: 30730567 [TBL] [Abstract][Full Text] [Related]
14. Syntaxin and VAMP association with lipid rafts depends on cholesterol depletion in capacitating sperm cells. Tsai PS; De Vries KJ; De Boer-Brouwer M; Garcia-Gil N; Van Gestel RA; Colenbrander B; Gadella BM; Van Haeften T Mol Membr Biol; 2007; 24(4):313-24. PubMed ID: 17520487 [TBL] [Abstract][Full Text] [Related]
15. Extracellular Vesicles in the Arbuscular Mycorrhizal Symbiosis: Current Understanding and Future Perspectives. Holland S; Roth R Mol Plant Microbe Interact; 2023 Apr; 36(4):235-244. PubMed ID: 36867731 [TBL] [Abstract][Full Text] [Related]
16. A Phosphate-Dependent Requirement for Transcription Factors IPD3 and IPD3L During Arbuscular Mycorrhizal Symbiosis in Lindsay PL; Williams BN; MacLean A; Harrison MJ Mol Plant Microbe Interact; 2019 Oct; 32(10):1277-1290. PubMed ID: 31070991 [TBL] [Abstract][Full Text] [Related]
17. The phosphate starvation response regulator PHR2 antagonizes arbuscule maintenance in Medicago. Wang P; Zhong Y; Li Y; Zhu W; Zhang Y; Li J; Chen Z; Limpens E New Phytol; 2024 May; ():. PubMed ID: 38803107 [TBL] [Abstract][Full Text] [Related]
18. Medicago AP2-Domain Transcription Factor WRI5a Is a Master Regulator of Lipid Biosynthesis and Transfer during Mycorrhizal Symbiosis. Jiang Y; Xie Q; Wang W; Yang J; Zhang X; Yu N; Zhou Y; Wang E Mol Plant; 2018 Nov; 11(11):1344-1359. PubMed ID: 30292683 [TBL] [Abstract][Full Text] [Related]
19. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Gaude N; Bortfeld S; Duensing N; Lohse M; Krajinski F Plant J; 2012 Feb; 69(3):510-28. PubMed ID: 21978245 [TBL] [Abstract][Full Text] [Related]