These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32308824)

  • 1. Predicting Adverse Drug Reactions on Distributed Health Data using Federated Learning.
    Choudhury O; Park Y; Salonidis T; Gkoulalas-Divanis A; Sylla I; Das AK
    AMIA Annu Symp Proc; 2019; 2019():313-322. PubMed ID: 32308824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Federated learning of predictive models from federated Electronic Health Records.
    Brisimi TS; Chen R; Mela T; Olshevsky A; Paschalidis IC; Shi W
    Int J Med Inform; 2018 Apr; 112():59-67. PubMed ID: 29500022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised signal detection for adverse drug reactions in medication dispensing data.
    Hoang T; Liu J; Roughead E; Pratt N; Li J
    Comput Methods Programs Biomed; 2018 Jul; 161():25-38. PubMed ID: 29852965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases.
    Zheng Y; Peng H; Zhang X; Zhao Z; Yin J; Li J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):517. PubMed ID: 30598065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive modeling of structured electronic health records for adverse drug event detection.
    Zhao J; Henriksson A; Asker L; Boström H
    BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational models for the prediction of adverse cardiovascular drug reactions.
    Jamal S; Ali W; Nagpal P; Grover S; Grover A
    J Transl Med; 2019 May; 17(1):171. PubMed ID: 31118067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models.
    Muñoz E; Novácek V; Vandenbussche PY
    Brief Bioinform; 2019 Jan; 20(1):190-202. PubMed ID: 28968655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records.
    Huang L; Shea AL; Qian H; Masurkar A; Deng H; Liu D
    J Biomed Inform; 2019 Nov; 99():103291. PubMed ID: 31560949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs.
    Liu M; Wu Y; Chen Y; Sun J; Zhao Z; Chen XW; Matheny ME; Xu H
    J Am Med Inform Assoc; 2012 Jun; 19(e1):e28-35. PubMed ID: 22718037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The class imbalance problem detecting adverse drug reactions in electronic health records.
    Santiso S; Casillas A; Pérez A
    Health Informatics J; 2019 Dec; 25(4):1768-1778. PubMed ID: 30230408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural gradient boosting in federated learning for hemodynamic instability prediction: towards a distributed and scalable deep learning-based solution.
    Manni F; Bukharev A; Jain A; Moorthy S; Rahman A; Bucur A
    AMIA Annu Symp Proc; 2022; 2022():729-738. PubMed ID: 37128389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing adverse drug reaction using statistical and machine learning methods: A systematic review.
    Kim HR; Sung M; Park JA; Jeong K; Kim HH; Lee S; Park YR
    Medicine (Baltimore); 2022 Jun; 101(25):e29387. PubMed ID: 35758373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.
    Liu R; AbdulHameed MDM; Kumar K; Yu X; Wallqvist A; Reifman J
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):44. PubMed ID: 28595649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the performance of machine learning penicillin adverse drug reaction classification with synthetic data and transfer learning.
    Stanekova V; Inglis JM; Lam L; Lam A; Smith W; Shakib S; Bacchi S
    Intern Med J; 2024 Jul; 54(7):1183-1189. PubMed ID: 38482918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning From Others Without Sacrificing Privacy: Simulation Comparing Centralized and Federated Machine Learning on Mobile Health Data.
    Liu JC; Goetz J; Sen S; Tewari A
    JMIR Mhealth Uhealth; 2021 Mar; 9(3):e23728. PubMed ID: 33783362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation Strategy on Federated Machine Learning Algorithm for Collaborative Predictive Maintenance.
    Bemani A; Björsell N
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining heterogeneous networks with topological features constructed from patient-contributed content for pharmacovigilance.
    Yang CC; Yang H
    Artif Intell Med; 2018 Aug; 90():42-52. PubMed ID: 30093253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer.
    Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A
    Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The value of federated learning during and post-COVID-19.
    Qian F; Zhang A
    Int J Qual Health Care; 2021 Mar; 33(1):. PubMed ID: 33538778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine-Learning Algorithm to Optimise Automated Adverse Drug Reaction Detection from Clinical Coding.
    McMaster C; Liew D; Keith C; Aminian P; Frauman A
    Drug Saf; 2019 Jun; 42(6):721-725. PubMed ID: 30725336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.