These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In-Vitro Comparative Examination of the Effect of Stromal Vascular Fraction Isolated by Mechanical and Enzymatic Methods on Wound Healing. Tiryaki KT; Cohen S; Kocak P; Canikyan Turkay S; Hewett S Aesthet Surg J; 2020 Oct; 40(11):1232-1240. PubMed ID: 32514571 [TBL] [Abstract][Full Text] [Related]
3. A Closed-system Technology for Mechanical Isolation of High Quantities of Stromal Vascular Fraction from Fat for Immediate Clinical Use. Solodeev I; Meilik B; Gur E; Shani N Plast Reconstr Surg Glob Open; 2023 Jun; 11(6):e5096. PubMed ID: 37361510 [TBL] [Abstract][Full Text] [Related]
4. Hybrid Stromal Vascular Fraction (Hybrid-SVF): A New Paradigm in Mechanical Regenerative Cell Processing. Tiryaki T; Cohen SR; Canikyan Turkay S; Kocak P; Sterodimas A; Schlaudraff KU; Akgün Demir I; Agovino A; Kul Y Plast Reconstr Surg Glob Open; 2022 Dec; 10(12):e4702. PubMed ID: 36601591 [TBL] [Abstract][Full Text] [Related]
5. Mechanical and Enzymatic Digestion of Autologous Fat Grafting (A-FG): Fat Volume Maintenance and AD-SVFs Amount in Comparison. Gentile P; Cervelli V; De Fazio D; Calabrese C; Scioli MG; Orlandi A Aesthetic Plast Surg; 2023 Oct; 47(5):2051-2062. PubMed ID: 37130992 [TBL] [Abstract][Full Text] [Related]
6. Modified nanofat grafting: Stromal vascular fraction simple and efficient mechanical isolation technique and perspectives in clinical recellularization applications. Girard P; Dulong J; Duisit J; Mocquard C; Le Gallou S; Chaput B; Lupon E; Watier E; Varin A; Tarte K; Bertheuil N Front Bioeng Biotechnol; 2022; 10():895735. PubMed ID: 36177178 [No Abstract] [Full Text] [Related]
7. Mechanical and Enzymatic Procedures to Isolate the Stromal Vascular Fraction From Adipose Tissue: Preliminary Results. Senesi L; De Francesco F; Farinelli L; Manzotti S; Gagliardi G; Papalia GF; Riccio M; Gigante A Front Cell Dev Biol; 2019; 7():88. PubMed ID: 31231649 [TBL] [Abstract][Full Text] [Related]
8. An In Vitro Study of the Effects of Mechanical and Enzymatic Isolation of Stromal Vascular Fraction on Wound Healing. Dai LG; Huang NC; Kang LY; Fu KY; Hsieh PS; Dai NT Ann Plast Surg; 2022 Mar; 88(1s Suppl 1):S13-S21. PubMed ID: 35225844 [TBL] [Abstract][Full Text] [Related]
9. An Optimized Method for Adipose Stromal Vascular Fraction Isolation and its Application in Fat Grafting. Cao L; Xiaoming F; Zhang Q; Fang J; Chu C; Lv J; Ma Y; Lu G; Yang K; Pan R Aesthetic Plast Surg; 2022 Oct; 46(5):2500-2508. PubMed ID: 34981156 [TBL] [Abstract][Full Text] [Related]
10. Arthroscopic Harvest of Adipose-Derived Mesenchymal Stem Cells From the Infrapatellar Fat Pad. Dragoo JL; Chang W Am J Sports Med; 2017 Nov; 45(13):3119-3127. PubMed ID: 28816507 [TBL] [Abstract][Full Text] [Related]
11. Mechanically Isolated Stromal Vascular Fraction Provides a Valid and Useful Collagenase-Free Alternative Technique: A Comparative Study. Chaput B; Bertheuil N; Escubes M; Grolleau JL; Garrido I; Laloze J; Espagnolle N; Casteilla L; Sensebé L; Varin A Plast Reconstr Surg; 2016 Oct; 138(4):807-819. PubMed ID: 27307342 [TBL] [Abstract][Full Text] [Related]
12. Effects of Collagenase Digestion and Stromal Vascular Fraction Supplementation on Volume Retention of Fat Grafts. Olenczak JB; Seaman SA; Lin KY; Pineros-Fernandez A; Davis CE; Salopek LS; Peirce SM; Cottler PS Ann Plast Surg; 2017 Jun; 78(6S Suppl 5):S335-S342. PubMed ID: 28525415 [TBL] [Abstract][Full Text] [Related]
13. Simple and Rapid Non-Enzymatic Procedure Allows the Isolation of Structurally Preserved Connective Tissue Micro-Fragments Enriched with SVF. Busato A; De Francesco F; Biswas R; Mannucci S; Conti G; Fracasso G; Conti A; Riccio V; Riccio M; Sbarbati A Cells; 2020 Dec; 10(1):. PubMed ID: 33383682 [TBL] [Abstract][Full Text] [Related]
14. Advanced methods to mechanically isolate stromal vascular fraction: A concise review. You X; Gao J; Yao Y Regen Ther; 2024 Dec; 27():120-125. PubMed ID: 38571891 [TBL] [Abstract][Full Text] [Related]
15. High-Quality Lipoaspirate Following 1470-nm Radial Emitting Laser-Assisted Liposuction. Shapira E; Plonski L; Menashe S; Ofek A; Rosenthal A; Brambilla M; Goldenberg G; Haimowitz S; Heller L Ann Plast Surg; 2022 Dec; 89(6):e60-e68. PubMed ID: 36416705 [TBL] [Abstract][Full Text] [Related]
16. Development of a System and Method for Automated Isolation of Stromal Vascular Fraction from Adipose Tissue Lipoaspirate. SundarRaj S; Deshmukh A; Priya N; Krishnan VS; Cherat M; Majumdar AS Stem Cells Int; 2015; 2015():109353. PubMed ID: 26167182 [TBL] [Abstract][Full Text] [Related]
17. Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation. Gentile P; Calabrese C; De Angelis B; Pizzicannella J; Kothari A; Garcovich S Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31684107 [TBL] [Abstract][Full Text] [Related]
18. Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells. Menzi N; Osinga R; Todorov A; Schaefer DJ; Martin I; Scherberich A Cytotechnology; 2018 Apr; 70(2):807-817. PubMed ID: 29344745 [TBL] [Abstract][Full Text] [Related]
19. The cell yields and biological characteristics of stromal/stem cells from lipoaspirate with different digestion loading ratio. Li Z; Mu D; Liu C; Xin M; Fu S; Li S; Qi J; Wang Q; Luan J Cytotechnology; 2020 Apr; 72(2):203-215. PubMed ID: 31993890 [TBL] [Abstract][Full Text] [Related]
20. Improved GMP compliant approach to manipulate lipoaspirates, to cryopreserve stromal vascular fraction, and to expand adipose stem cells in xeno-free media. Agostini F; Rossi FM; Aldinucci D; Battiston M; Lombardi E; Zanolin S; Massarut S; Parodi PC; Da Ponte A; Tessitori G; Pivetta B; Durante C; Mazzucato M Stem Cell Res Ther; 2018 May; 9(1):130. PubMed ID: 29751821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]