BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 32309136)

  • 1. How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review.
    Choy MHV; Wong RMY; Chow SKH; Li MC; Chim YN; Li TK; Ho WT; Cheng JCY; Cheung WH
    J Orthop Translat; 2020 Mar; 21():111-121. PubMed ID: 32309136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of osteoporotic fracture healing by vibration treatment: The role of osteocytes.
    Cheung WH; Wong RMY; Choy VMH; Li MCM; Cheng KYK; Chow SKH
    Injury; 2021 Jun; 52 Suppl 2():S97-S100. PubMed ID: 32654846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteocyte-specific dentin matrix protein 1 : the role of mineralization regulation in low-magnitude high-frequency vibration enhanced osteoporotic fracture healing.
    Li MCM; Chow SK; Wong RMY; Chen B; Cheng JCY; Qin L; Cheung WH
    Bone Joint Res; 2022 Jul; 11(7):465-476. PubMed ID: 35787000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can we enhance osteoporotic metaphyseal fracture healing through enhancing ultrastructural and functional changes of osteocytes in cortical bone with low-magnitude high-frequency vibration?
    Choy MV; Wong RM; Li MC; Wang BY; Liu XD; Lee W; Cheng JC; Chow SK; Cheung WH
    FASEB J; 2020 Mar; 34(3):4234-4252. PubMed ID: 31961009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases.
    Pathak JL; Bravenboer N; Klein-Nulend J
    Front Endocrinol (Lausanne); 2020; 11():405. PubMed ID: 32733380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. YAP and TAZ Mediate Osteocyte Perilacunar/Canalicular Remodeling.
    Kegelman CD; Coulombe JC; Jordan KM; Horan DJ; Qin L; Robling AG; Ferguson VL; Bellido TM; Boerckel JD
    J Bone Miner Res; 2020 Jan; 35(1):196-210. PubMed ID: 31610061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sclerostin and the regulation of bone formation: Effects in hip osteoarthritis and femoral neck fracture.
    Power J; Poole KE; van Bezooijen R; Doube M; Caballero-Alías AM; Lowik C; Papapoulos S; Reeve J; Loveridge N
    J Bone Miner Res; 2010 Aug; 25(8):1867-76. PubMed ID: 20200987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteocyte recruitment declines as the osteon fills in: interacting effects of osteocytic sclerostin and previous hip fracture on the size of cortical canals in the femoral neck.
    Power J; Doube M; van Bezooijen RL; Loveridge N; Reeve J
    Bone; 2012 May; 50(5):1107-14. PubMed ID: 22353552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of osteocytes-specific molecular mechanism in regulation of mechanotransduction - A systematic review.
    Li MCM; Chow SKH; Wong RMY; Qin L; Cheung WH
    J Orthop Translat; 2021 Jul; 29():1-9. PubMed ID: 34036041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteocyte mechanosensing following short-term and long-term treatment with sclerostin antibody.
    Morrell AE; Robinson ST; Ke HZ; Holdsworth G; Guo XE
    Bone; 2021 Aug; 149():115967. PubMed ID: 33892178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunolocalization of osteocyte-derived molecules during bone fracture healing of mouse ribs.
    Liu Z; Yamamoto T; Hasegawa T; Hongo H; Tsuboi K; Tsuchiya E; Haraguchi M; Abe M; Freitas PH; Kudo A; Oda K; Li M; Amizuka N
    Biomed Res; 2016; 37(2):141-51. PubMed ID: 27108883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of Resin Cast Etching to Visualising the Osteocyte Lacuno-Canalicular Network Architecture in Bone Biology and Tissue Engineering.
    Sato M; Shah FA
    Calcif Tissue Int; 2023 May; 112(5):525-542. PubMed ID: 36611094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteocytes.
    Rupp M; Merboth F; Daghma DE; Biehl C; El Khassawna T; Heiß C
    Z Orthop Unfall; 2019 Apr; 157(2):154-163. PubMed ID: 30366349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of osteocyte-mediated regulation of bone remodelling in inflammatory bone disease.
    Intemann J; De Gorter DJJ; Naylor AJ; Dankbar B; Wehmeyer C
    Swiss Med Wkly; 2020 Jan; 150():w20187. PubMed ID: 32031236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles?
    Sapir-Koren R; Livshits G
    Osteoporos Int; 2014 Dec; 25(12):2685-700. PubMed ID: 25030653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the osteocyte network in the human skeleton.
    Buenzli PR; Sims NA
    Bone; 2015 Jun; 75():144-50. PubMed ID: 25708054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling.
    Dole NS; Mazur CM; Acevedo C; Lopez JP; Monteiro DA; Fowler TW; Gludovatz B; Walsh F; Regan JN; Messina S; Evans DS; Lang TF; Zhang B; Ritchie RO; Mohammad KS; Alliston T
    Cell Rep; 2017 Nov; 21(9):2585-2596. PubMed ID: 29186693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of the Impact of Implant Biomaterials on Osteocytes.
    Shah FA; Thomsen P; Palmquist A
    J Dent Res; 2018 Aug; 97(9):977-986. PubMed ID: 29863948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pigment epithelium-derived factor (PEDF) reduced expression and synthesis of SOST/sclerostin in bone explant cultures: implication of PEDF-osteocyte gene regulation in vivo.
    Li F; Cain JD; Tombran-Tink J; Niyibizi C
    J Bone Miner Metab; 2019 Sep; 37(5):773-779. PubMed ID: 30607618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteocyte: the unrecognized side of bone tissue.
    Rochefort GY; Pallu S; Benhamou CL
    Osteoporos Int; 2010 Sep; 21(9):1457-69. PubMed ID: 20204595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.