These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32309431)

  • 1. IMPContact: An Interhelical Residue Contact Prediction Method.
    Fang C; Jia Y; Hu L; Lu Y; Wang H
    Biomed Res Int; 2020; 2020():4569037. PubMed ID: 32309431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane protein alignment and fold recognition based on predicted topology.
    Wang H; He Z; Zhang C; Zhang L; Xu D
    PLoS One; 2013; 8(7):e69744. PubMed ID: 23894534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Sequential Segment Based Alpha-Helical Transmembrane Protein Alignment Method.
    Wang H; Wang J; Zhang L; Sun P; Du N; Li Y
    Int J Biol Sci; 2018; 14(8):901-906. PubMed ID: 29989071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks.
    Sun J; Frishman D
    J Struct Biol; 2020 Oct; 212(1):107574. PubMed ID: 32663598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Improved Topology Prediction of Alpha-Helical Transmembrane Protein Based on Deep Multi-Scale Convolutional Neural Network.
    Yang Y; Yu J; Liu Z; Wang X; Wang H; Ma Z; Xu D
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):295-304. PubMed ID: 32750879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features.
    Sawhney A; Li J; Liao L
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OMPcontact: An Outer Membrane Protein Inter-Barrel Residue Contact Prediction Method.
    Zhang L; Wang H; Yan L; Su L; Xu D
    J Comput Biol; 2017 Mar; 24(3):217-228. PubMed ID: 27513917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks.
    Liu Y; Palmedo P; Ye Q; Berger B; Peng J
    Cell Syst; 2018 Jan; 6(1):65-74.e3. PubMed ID: 29275173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MemDis: Predicting Disordered Regions in Transmembrane Proteins.
    Dobson L; Tusnády GE
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCP-GC-LM: single-sequence-based protein contact prediction using dual graph convolutional neural network and convolutional neural network.
    Ouyang J; Gao Y; Yang Y
    BMC Bioinformatics; 2024 Sep; 25(1):287. PubMed ID: 39223474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Attention-UNet Models to Predict Protein Contact Maps.
    Jisna VA; Ajay AP; Jayaraj PB
    J Comput Biol; 2024 Jul; 31(7):691-702. PubMed ID: 38979621
    [No Abstract]   [Full Text] [Related]  

  • 16. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
    Hou J; Wu T; Cao R; Cheng J
    Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks.
    Gao T; Zhao Y; Zhang L; Wang H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach.
    Wang XF; Chen Z; Wang C; Yan RX; Zhang Z; Song J
    PLoS One; 2011; 6(10):e26767. PubMed ID: 22046350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TMPSS: A Deep Learning-Based Predictor for Secondary Structure and Topology Structure Prediction of Alpha-Helical Transmembrane Proteins.
    Liu Z; Gong Y; Bao Y; Guo Y; Wang H; Lin GN
    Front Bioeng Biotechnol; 2020; 8():629937. PubMed ID: 33569377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
    Roy RS; Quadir F; Soltanikazemi E; Cheng J
    Bioinformatics; 2022 Mar; 38(7):1904-1910. PubMed ID: 35134816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.