These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32309431)

  • 61. Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins.
    Roche R; Bhattacharya S; Bhattacharya D
    PLoS Comput Biol; 2021 Feb; 17(2):e1008753. PubMed ID: 33621244
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Efficient dynamic programming algorithm with prior knowledge for protein β-strand alignment.
    Sabzekar M; Naghibzadeh M; Sadri J
    J Theor Biol; 2017 Mar; 417():43-50. PubMed ID: 28108305
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Predicting residue-residue contact maps by a two-layer, integrated neural-network method.
    Xue B; Faraggi E; Zhou Y
    Proteins; 2009 Jul; 76(1):176-83. PubMed ID: 19137600
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Improving protein fold recognition using triplet network and ensemble deep learning.
    Liu Y; Han K; Zhu YH; Zhang Y; Shen LC; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226918
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy.
    Xiong D; Zeng J; Gong H
    Bioinformatics; 2017 Sep; 33(17):2675-2683. PubMed ID: 28472263
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 67. TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool.
    Kozma D; Tusnády GE
    BMC Bioinformatics; 2015 Jun; 16():201. PubMed ID: 26123059
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Predicting protein-protein binding sites in membrane proteins.
    Bordner AJ
    BMC Bioinformatics; 2009 Sep; 10():312. PubMed ID: 19778442
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CONFOLD: Residue-residue contact-guided ab initio protein folding.
    Adhikari B; Bhattacharya D; Cao R; Cheng J
    Proteins; 2015 Aug; 83(8):1436-49. PubMed ID: 25974172
    [TBL] [Abstract][Full Text] [Related]  

  • 70. FingerprintContacts: Predicting Alternative Conformations of Proteins from Coevolution.
    Feng J; Shukla D
    J Phys Chem B; 2020 May; 124(18):3605-3615. PubMed ID: 32283936
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Transmembrane helix and topology prediction using hierarchical SVM classifiers and an alternating geometric scoring function.
    Lo A; Chiu HS; Sung TY; Hsu WL
    Comput Syst Bioinformatics Conf; 2006; ():31-42. PubMed ID: 17369623
    [TBL] [Abstract][Full Text] [Related]  

  • 72. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.
    Yang J; Jin QY; Zhang B; Shen HB
    Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618
    [TBL] [Abstract][Full Text] [Related]  

  • 73. TOPPER: topology prediction of transmembrane protein based on evidential reasoning.
    Deng X; Liu Q; Hu Y; Deng Y
    ScientificWorldJournal; 2013; 2013():123731. PubMed ID: 23401665
    [TBL] [Abstract][Full Text] [Related]  

  • 74. TOPTMH: topology predictor for transmembrane alpha-helices.
    Ahmed R; Rangwala H; Karypis G
    J Bioinform Comput Biol; 2010 Feb; 8(1):39-57. PubMed ID: 20183873
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13.
    Kandathil SM; Greener JG; Jones DT
    Proteins; 2019 Dec; 87(12):1092-1099. PubMed ID: 31298436
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.
    Heffernan R; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Sep; 33(18):2842-2849. PubMed ID: 28430949
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A survey on protein-DNA-binding sites in computational biology.
    Zhang Y; Bao W; Cao Y; Cong H; Chen B; Chen Y
    Brief Funct Genomics; 2022 Sep; 21(5):357-375. PubMed ID: 35652477
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Accurate contact predictions using covariation techniques and machine learning.
    Kosciolek T; Jones DT
    Proteins; 2016 Sep; 84 Suppl 1(Suppl Suppl 1):145-51. PubMed ID: 26205532
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Prediction of structural features and application to outer membrane protein identification.
    Yan R; Wang X; Huang L; Yan F; Xue X; Cai W
    Sci Rep; 2015 Jun; 5():11586. PubMed ID: 26104144
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
    Chien YT; Huang SW
    PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.