These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32309696)

  • 21. Effect of sodium citrate on asphaltene film at the oil-water interface.
    Feng L; Manica R; Lu Y; Liu B; Lu H; Liu Q
    J Colloid Interface Sci; 2022 Nov; 625():24-32. PubMed ID: 35714405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on the Kinetic Process of Asphaltene Precipitation during Crude Oil Mixing and Its Effect on the Wax Behavior of Crude Oil.
    Lei Y; Yu P; Ni W; Peng H; Liu Y; Lv X; Zhao H
    ACS Omega; 2021 Jan; 6(2):1497-1504. PubMed ID: 33490809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of CO
    Cho J; Min B; Jeong MS; Lee YW; Lee KS
    Sci Rep; 2021 Mar; 11(1):2082. PubMed ID: 33654158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of MgO, γ-Al
    Nowrouzi I; Khaksar Manshad A; Mohammadi AH
    ACS Omega; 2022 Jul; 7(26):22161-22172. PubMed ID: 35811910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of nanoparticles on the CO
    Al-Anssari S; Barifcani A; Keshavarz A; Iglauer S
    J Colloid Interface Sci; 2018 Dec; 532():136-142. PubMed ID: 30077827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the Performance of Carboxylate-Alumoxane Nanoparticles as a Novel Chemically Functionalized Inhibitor on Asphaltene Precipitation.
    Bagherpour S; Riazi M; Riazi M; Cortés FB; Mousavi SH
    ACS Omega; 2020 Jul; 5(26):16149-16164. PubMed ID: 32656437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of Methane-Induced Asphaltene Precipitation in a Multiple Contact Process.
    Zhang H; Liu Y; Han P; Wang S; Yan H; Guo P; Zhang J; Bai Z; Wang Z; Hukuang H; Li X
    ACS Omega; 2022 Dec; 7(50):46613-46622. PubMed ID: 36570302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Temperature on Asphaltene Precipitation in Crude Oils from Xinjiang Oilfield.
    Li M; Tian Y; Wang C; Jiang C; Yang C; Zhang L
    ACS Omega; 2022 Oct; 7(41):36244-36253. PubMed ID: 36278113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minimum CO
    Abdurrahman M; Permadi AK; Arsad A; Abdul Rahman AF; Bae W; Husna UZ; Pang AL; Fauzi R
    ACS Omega; 2023 Mar; 8(9):8703-8711. PubMed ID: 36910982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase behavior and fluid interactions of a CO
    Rezk MG; Foroozesh J
    Heliyon; 2019 Jul; 5(7):e02057. PubMed ID: 31384679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of Water/Oil Interfacial Tension by Model Asphaltenes: The Governing Role of Surface Concentration.
    Jian C; Poopari MR; Liu Q; Zerpa N; Zeng H; Tang T
    J Phys Chem B; 2016 Jun; 120(25):5646-54. PubMed ID: 27268710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Importance of the Nanofluid Preparation for Ultra-Low Interfacial Tension in Enhanced Oil Recovery Based on Surfactant-Nanoparticle-Brine System Interaction.
    Betancur S; Giraldo LJ; Carrasco-Marín F; Riazi M; Manrique EJ; Quintero H; García HA; Franco-Ariza CA; Cortés FB
    ACS Omega; 2019 Oct; 4(14):16171-16180. PubMed ID: 31592484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asphaltene Remediation and Improved Oil Recovery by Advanced Solvent Deasphalting Technology.
    Alkafeef SF; Al-Marri SS
    ACS Omega; 2023 Jul; 8(29):26619-26627. PubMed ID: 37521633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental measurement and modeling of asphaltene adsorption onto iron oxide and lime nanoparticles in the presence and absence of water.
    Ansari S; Mohammadi MR; Bahmaninia H; Hemmati-Sarapardeh A; Schaffie M; Norouzi-Apourvari S; Ranjbar M
    Sci Rep; 2023 Jan; 13(1):122. PubMed ID: 36599908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Review of the Determination and Reduction of the Minimum Miscibility Pressure during CO
    Song G; Meng Y; Zhang C; Zhao Z; Yang Q
    ACS Omega; 2024 Apr; 9(13):14747-14765. PubMed ID: 38585095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial intelligence-based framework for precise prediction of asphaltene particle aggregation kinetics in petroleum recovery.
    Sharifzadegan A; Behnamnia M; Dehghan Monfared A
    Sci Rep; 2023 Oct; 13(1):18525. PubMed ID: 37898668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of Surface-Modified Silica Nanoparticles to the Interface of Melt Poly(lactic acid) and Supercritical Carbon Dioxide.
    Sarikhani K; Jeddi K; Thompson RB; Park CB; Chen P
    Langmuir; 2015 May; 31(20):5571-9. PubMed ID: 25919815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research Progress in Nanoparticle Inhibitors for Crude Oil Asphaltene Deposition.
    Yang S; Yan C; Cai J; Pan Y; Han Q
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Various Isolated Microbial Consortiums on the Biodegradation Process of Precipitated Asphaltenes from Crude Oil.
    Shahebrahimi Y; Fazlali A; Motamedi H; Kord S; Mohammadi AH
    ACS Omega; 2020 Feb; 5(7):3131-3143. PubMed ID: 32118129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling the effect of the inhibitors on asphaltene precipitation using Flory-Huggins theory.
    Eskini F; Dehaghani AS; Shadman MM
    Sci Rep; 2022 Nov; 12(1):18946. PubMed ID: 36347921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.