BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32309715)

  • 1. Epigenetic TET-Catalyzed Oxidative Products of 5-Methylcytosine Impede Z-DNA Formation of CG Decamers.
    Vongsutilers V; Shinohara Y; Kawai G
    ACS Omega; 2020 Apr; 5(14):8056-8064. PubMed ID: 32309715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine.
    Klungland A; Robertson AB
    Free Radic Biol Med; 2017 Jun; 107():62-68. PubMed ID: 27890639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Methylcytosine containing CG decamer as Z-DNA embedded sequence for a potential Z-DNA binding protein probe.
    Vongsutilers V; Sawaspaiboontawee K; Tuesuwan B; Shinohara Y; Kawai G
    Nucleosides Nucleotides Nucleic Acids; 2018; 37(9):485-497. PubMed ID: 30188765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA.
    Modrzejewska M; Gawronski M; Skonieczna M; Zarakowska E; Starczak M; Foksinski M; Rzeszowska-Wolny J; Gackowski D; Olinski R
    Free Radic Biol Med; 2016 Dec; 101():378-383. PubMed ID: 27833031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Chemical Solid-Phase Synthesis and Deprotection of 5-Hydroxymethylcytosine-Containing RNA.
    Riml C; Micura R
    Methods Mol Biol; 2017; 1562():295-302. PubMed ID: 28349469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis for the faithful replication of 5-methylcytosine and its oxidized forms by DNA polymerase β.
    Howard MJ; Foley KG; Shock DD; Batra VK; Wilson SH
    J Biol Chem; 2019 May; 294(18):7194-7201. PubMed ID: 30885943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein.
    Kizaki S; Zou T; Li Y; Han YW; Suzuki Y; Harada Y; Sugiyama H
    Chemistry; 2016 Nov; 22(46):16598-16601. PubMed ID: 27689340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Sequence Specificity of 5-Methylcytosine Oxidation by Tet1 Protein with High-Throughput Sequencing.
    Kizaki S; Chandran A; Sugiyama H
    Chembiochem; 2016 Mar; 17(5):403-6. PubMed ID: 26715454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of DNA Modifications Using Two-Dimensional Ultraperformance Liquid Chromatography Tandem Mass Spectrometry (2D-UPLC-MS/MS).
    Starczak M; Gawronski M; Olinski R; Gackowski D
    Methods Mol Biol; 2021; 2198():91-108. PubMed ID: 32822025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the Biochemistry, Evolution, and Biotechnological Applications of the Ten-Eleven Translocation (TET) Enzymes.
    Parker MJ; Weigele PR; Saleh L
    Biochemistry; 2019 Feb; 58(6):450-467. PubMed ID: 30571101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms.
    Li D; Guo B; Wu H; Tan L; Lu Q
    Cytogenet Genome Res; 2015; 146(3):171-80. PubMed ID: 26302812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro.
    Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D
    Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond.
    Kumar S; Chinnusamy V; Mohapatra T
    Front Genet; 2018; 9():640. PubMed ID: 30619465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of TET-Oxidized 5-Methylcytosine Bases by Capillary Gel Electrophoresis.
    Vaisvila R; Hunault L; Saleh L
    Methods Mol Biol; 2021; 2198():137-144. PubMed ID: 32822028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Hydroxymethylation by Ten-eleven Translocation Methylcytosine Dioxygenase 1 and 3 Regulates Nociceptive Sensitization in a Chronic Inflammatory Pain Model.
    Pan Z; Xue ZY; Li GF; Sun ML; Zhang M; Hao LY; Tang QQ; Zhu LJ; Cao JL
    Anesthesiology; 2017 Jul; 127(1):147-163. PubMed ID: 28437360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter.
    Kitsera N; Allgayer J; Parsa E; Geier N; Rossa M; Carell T; Khobta A
    Nucleic Acids Res; 2017 Nov; 45(19):11033-11042. PubMed ID: 28977475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research advances in TET enzyme and its intermediate product 5hmC].
    Wu J; Fang X; Xia X; Zhang M
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2019 Apr; 44(4):449-454. PubMed ID: 31113923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA.
    Wang Y; Zhang X; Zou G; Peng S; Liu C; Zhou X
    Acc Chem Res; 2019 Apr; 52(4):1016-1024. PubMed ID: 30666870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
    Ito S; Kuraoka I
    DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.