These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32309830)

  • 1. Metallic nanostructures with low dimensionality for electrochemical water splitting.
    Li L; Wang P; Shao Q; Huang X
    Chem Soc Rev; 2020 May; 49(10):3072-3106. PubMed ID: 32309830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in water-splitting electrocatalysis mediated by 2D noble metal materials.
    Tian L; Li Z; Song M; Li J
    Nanoscale; 2021 Jul; 13(28):12088-12101. PubMed ID: 34236371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for Developing Transition Metal Phosphides in Electrochemical Water Splitting.
    Ying J; Wang H
    Front Chem; 2021; 9():700020. PubMed ID: 34805087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing MOF Nanoarchitectures for Electrochemical Water Splitting.
    Zhang B; Zheng Y; Ma T; Yang C; Peng Y; Zhou Z; Zhou M; Li S; Wang Y; Cheng C
    Adv Mater; 2021 Apr; 33(17):e2006042. PubMed ID: 33749910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design and Engineering of Nanomaterials Derived from Prussian Blue and Its Analogs for Electrochemical Water Splitting.
    Xuan C; Zhang J; Wang J; Wang D
    Chem Asian J; 2020 Apr; 15(7):958-972. PubMed ID: 32048454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling Transition Metal Catalysts with Ir for Enhanced Electrochemical Water Splitting Activity.
    Yang X; Liu Y; Guo R; Xiao J
    Chem Rec; 2022 Dec; 22(12):e202200176. PubMed ID: 36000851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Electrocatalytic Water Splitting by Strain Engineering.
    You B; Tang MT; Tsai C; Abild-Pedersen F; Zheng X; Li H
    Adv Mater; 2019 Apr; 31(17):e1807001. PubMed ID: 30773741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting.
    Jiang Y; Lu Y
    Nanoscale; 2020 May; 12(17):9327-9351. PubMed ID: 32315016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Multifunctional Co-N-C Electrocatalysts with Synergistic Effects of Co-N Moieties and Co Metallic Nanoparticles Encapsulated in a N-Doped Carbon Matrix for Water-Splitting and Oxygen Redox Reactions.
    Lyu D; Du Y; Huang S; Mollamahale BY; Zhang X; Hasan SW; Yu F; Wang S; Tian ZQ; Shen PK
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39809-39819. PubMed ID: 31596068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of diverse nanostructures by hydrothermal and microemulsion routes for electrochemical water splitting.
    Das A; Ganguli AK
    RSC Adv; 2018 Jul; 8(44):25065-25078. PubMed ID: 35542152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Synthesis of Ni
    Zheng X; Han X; Liu H; Chen J; Fu D; Wang J; Zhong C; Deng Y; Hu W
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13675-13684. PubMed ID: 29616794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.
    Teng X; Wang J; Ji L; Lv Y; Chen Z
    Nanoscale; 2018 May; 10(19):9276-9285. PubMed ID: 29736520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co oxide nanostructures for electrocatalytic water-oxidation: effects of dimensionality and related properties.
    Gupta S; Yadav A; Bhartiya S; Singh MK; Miotello A; Sarkar A; Patel N
    Nanoscale; 2018 May; 10(18):8806-8819. PubMed ID: 29713706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting.
    Zheng X; Han X; Zhang Y; Wang J; Zhong C; Deng Y; Hu W
    Nanoscale; 2019 Mar; 11(12):5646-5654. PubMed ID: 30865205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Structure Reconfiguration toward Pyrite NiS
    Liu H; He Q; Jiang H; Lin Y; Zhang Y; Habib M; Chen S; Song L
    ACS Nano; 2017 Nov; 11(11):11574-11583. PubMed ID: 29131577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional N-Doped Carbon Nanotube Frameworks on Ni Foam Derived from a Metal-Organic Framework as a Bifunctional Electrocatalyst for Overall Water Splitting.
    Yuan Q; Yu Y; Gong Y; Bi X
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3592-3602. PubMed ID: 31858792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.