These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32309838)

  • 1. Appraising spin-state energetics in transition metal complexes using double-hybrid models: accountability of SOS0-PBESCAN0-2(a) as a promising paradigm.
    Alipour M; Izadkhast T
    Phys Chem Chem Phys; 2020 May; 22(17):9388-9404. PubMed ID: 32309838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do any types of double-hybrid models render the correct order of excited state energies in inverted singlet-triplet emitters?
    Alipour M; Izadkhast T
    J Chem Phys; 2022 Feb; 156(6):064302. PubMed ID: 35168336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-Opposite-Scaled Range-Separated Exchange Double-Hybrid Models (SOS-RSX-DHs): Marriage Between DH and RSX/SOS-RSX Is Not Always a Happy Match.
    Alipour M; Karimi N
    J Chem Theory Comput; 2021 Jul; 17(7):4077-4091. PubMed ID: 34085815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seeking for Spin-Opposite-Scaled Double-Hybrid Models Free of Fitted Parameters.
    Alipour M
    J Phys Chem A; 2016 May; 120(20):3726-30. PubMed ID: 27163506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the accountability of parameterized and parameter-free single-hybrid and double-hybrid functionals for photophysical properties of TADF-based OLEDs.
    Alipour M; Karimi N
    J Chem Phys; 2017 Jun; 146(23):234304. PubMed ID: 28641443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes.
    Wilbraham L; Adamo C; Ciofini I
    J Chem Phys; 2018 Jan; 148(4):041103. PubMed ID: 29390824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel recipe for double-hybrid density functional computations of linear and nonlinear polarizabilities of molecules and nanoclusters.
    Alipour M
    J Phys Chem A; 2014 Jul; 118(28):5333-42. PubMed ID: 25003513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of double-hybrid density functionals for electric response properties of transition-metal systems: a new paradigm based on physical considerations.
    Alipour M
    J Phys Chem A; 2013 Apr; 117(13):2884-90. PubMed ID: 23521703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jacob's Ladder as Sketched by Escher: Assessing the Performance of Broadly Used Density Functionals on Transition Metal Surface Properties.
    Vega L; Ruvireta J; ViƱes F; Illas F
    J Chem Theory Comput; 2018 Jan; 14(1):395-403. PubMed ID: 29182868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinning around in Transition-Metal Chemistry.
    Swart M; Gruden M
    Acc Chem Res; 2016 Dec; 49(12):2690-2697. PubMed ID: 27993008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal spin crossover in Fe(ii) and Fe(iii). Accurate spin state energetics at the solid state.
    Vela S; Fumanal M; Cirera J; Ribas-Arino J
    Phys Chem Chem Phys; 2020 Mar; 22(9):4938-4945. PubMed ID: 32096536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew-Zunger and locally scaled self-interaction corrected methods.
    Akter S; Yamamoto Y; Diaz CM; Jackson KA; Zope RR; Baruah T
    J Chem Phys; 2020 Oct; 153(16):164304. PubMed ID: 33138422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring non-covalent interactions in excited states: beyond aromatic excimer models.
    Jones AC; Goerigk L
    Phys Chem Chem Phys; 2024 Oct; 26(38):25192-25207. PubMed ID: 39314200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits.
    Perdew JP; Ruzsinszky A; Tao J; Staroverov VN; Scuseria GE; Csonka GI
    J Chem Phys; 2005 Aug; 123(6):62201. PubMed ID: 16122287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics.
    Nandy A; Chu DBK; Harper DR; Duan C; Arunachalam N; Cytter Y; Kulik HJ
    Phys Chem Chem Phys; 2020 Sep; 22(34):19326-19341. PubMed ID: 32820781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correcting Systematic Errors in DFT Spin-Splitting Energetics for Transition Metal Complexes.
    Hughes TF; Friesner RA
    J Chem Theory Comput; 2011 Jan; 7(1):19-32. PubMed ID: 26606215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing r2SCAN meta-GGA functional for structural parameters, cohesive energy, mechanical modulus, and thermophysical properties of 3d, 4d, and 5d transition metals.
    Liu H; Bai X; Ning J; Hou Y; Song Z; Ramasamy A; Zhang R; Li Y; Sun J; Xiao B
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38189614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-state gaps and self-interaction-corrected density functional approximations: Octahedral Fe(II) complexes as case study.
    Romero S; Baruah T; Zope RR
    J Chem Phys; 2023 Feb; 158(5):054305. PubMed ID: 36754787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of electronic structure methods for the determination of the ground spin states of Fe(ii), Fe(iii) and Fe(iv) complexes.
    Verma P; Varga Z; Klein JEMN; Cramer CJ; Que L; Truhlar DG
    Phys Chem Chem Phys; 2017 May; 19(20):13049-13069. PubMed ID: 28484765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.
    Gani TZH; Kulik HJ
    J Chem Theory Comput; 2017 Nov; 13(11):5443-5457. PubMed ID: 29049878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.