BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32310088)

  • 1. Measurement of gamma-ray dose and neutron activation in BNCT beams using TLD-200.
    Tsai WC; Yang ZY; Lee SC; Jiang SH
    Appl Radiat Isot; 2020 Aug; 162():109146. PubMed ID: 32310088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QA measurement of gamma-ray dose and neutron activation using TLD-400 for BNCT beam.
    Tsai WC; Huang CK; Jiang SH
    Appl Radiat Isot; 2018 Jul; 137():73-79. PubMed ID: 29587162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.
    Gambarini G; Magni D; Regazzoni V; Borroni M; Carrara M; Pignoli E; Burian J; Marek M; Klupak V; Viererbl L
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):422-7. PubMed ID: 24435913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-phantom neutron dose measurement using Gafchromic film dosimeter for QA of BNCT beams.
    Hsiao MC; Jiang SH
    Appl Radiat Isot; 2019 Jan; 143():79-86. PubMed ID: 30391715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prompt gamma ray detection and imaging for boron neutron capture therapy using CdTe detector and novel detector shield - Monte Carlo study.
    Moktan H; Lee CL; Cho SH
    Med Phys; 2023 Mar; 50(3):1736-1745. PubMed ID: 36625477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of dose rate scaling factors used in NCTPlan treatment planning code for the BNCT beam of THOR.
    Hsu FY; Liu MT; Tung CJ; Hsueh Liu YW; Chang CC; Liu HM; Chou FI
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S130-3. PubMed ID: 19375926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.
    Bavarnegin E; Sadremomtaz A; Khalafi H; Kasesaz Y
    J Cancer Res Ther; 2016; 12(2):826-9. PubMed ID: 27461658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma dose measurement in a water phantom irradiated with the BNCT facility at THOR.
    Liu HM; Hsu PC; Liaw TF
    Radiat Prot Dosimetry; 2001; 95(4):353-8. PubMed ID: 11707034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neutron sensitivity of dosimeters applied to boron neutron capture therapy.
    Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ
    Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Error prediction of LiF-TLD used for gamma dose measurement for BNCT.
    Liu HM; Liu YH
    Appl Radiat Isot; 2011 Dec; 69(12):1846-9. PubMed ID: 21489808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron spectra measurement and comparison of the HFR and THOR BNCT beams.
    Liu YH; Nievaart S; Tsai PE; Liu HM; Moss R; Jiang SH
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S137-40. PubMed ID: 19409798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax.
    Wang P; Zhen H; Jiang X; Zhang W; Cheng X; Guo G; Mao X; Zhang X
    BMC Cancer; 2010 Dec; 10():661. PubMed ID: 21122152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study of optical imaging of the boron-dose distribution by a liquid scintillator in a clinical boron neutron capture therapy field.
    Maeda H; Nohtomi A; Hu N; Kakino R; Akita K; Ono K
    Med Phys; 2024 Jan; 51(1):509-521. PubMed ID: 37672219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of the new THOR epithermal neutron beam for BNCT.
    Tung CJ; Wang YL; Hsu FY; Chang SL; Liu YW
    Appl Radiat Isot; 2004 Nov; 61(5):861-4. PubMed ID: 15308158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the gamma-ray dose in an epithermal neutron beam.
    Raaijmakers CP; Konijnenberg MW; Mijnheer BJ; Stecher-Rasmussen F; Verhagen H
    Strahlenther Onkol; 1993 Jan; 169(1):18-20. PubMed ID: 8434334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Out-of-field dosimetry using a validated PHITS model and computational phantom in clinical BNCT.
    Kakino R; Hu N; Tanaka H; Takeno S; Aihara T; Nihei K; Ono K
    Med Phys; 2024 Feb; 51(2):1351-1363. PubMed ID: 38153111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.
    Schmitz T; Bassler N; Blaickner M; Ziegner M; Hsiao MC; Liu YH; Koivunoro H; Auterinen I; Serén T; Kotiluoto P; Palmans H; Sharpe P; Langguth P; Hampel G
    Med Phys; 2015 Jan; 42(1):400-11. PubMed ID: 25563280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose-rate scaling factor estimation of THOR BNCT test beam.
    Hsu FY; Tung CJ; Chen JC; Wang YL; Huang HC; Zamenhof RG
    Appl Radiat Isot; 2004 Nov; 61(5):881-5. PubMed ID: 15308162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preliminary study on using the radiochromic film for 2D beam profile QC/QA at the THOR BNCT facility.
    Hsiao MC; Chen WL; Tsai PE; Huang CK; Liu YH; Liu HM; Jiang SH
    Appl Radiat Isot; 2011 Dec; 69(12):1915-7. PubMed ID: 21570854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.