These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32310088)

  • 41. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.
    Moghaddasi L; Bezak E
    Australas Phys Eng Sci Med; 2018 Mar; 41(1):129-141. PubMed ID: 29362987
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toward a final design for the Birmingham boron neutron capture therapy neutron beam.
    Allen DA; Beynon TD; Green S; James ND
    Med Phys; 1999 Jan; 26(1):77-82. PubMed ID: 9949401
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Towards in vivo monitoring of neutron distributions for quality control of BNCT.
    Verbakel WF; Hideghety K; Morrissey J; Sauerwein W; Stecher-Rasmussen F
    Phys Med Biol; 2002 Apr; 47(7):1059-72. PubMed ID: 11996055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.
    Horst F; Czarnecki D; Zink K
    Med Phys; 2015 Nov; 42(11):6529-36. PubMed ID: 26520743
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Capability of NIPAM polymer gel in recording dose from the interaction of (10)B and thermal neutron in BNCT.
    Khajeali A; Reza Farajollahi A; Kasesaz Y; Khodadadi R; Khalili A; Naseri A
    Appl Radiat Isot; 2015 Nov; 105():257-263. PubMed ID: 26356043
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The overview and prospects of BNCT facility at Tsing Hua Open-pool reactor.
    Jiang SH; Hsueh Liu YW; Chou FI; Liu HM; Peir JJ; Liu YH; Huang YS; Wang LW; Chen YW; Yen SH; Wu YH; Liu CS; Lee JC; Chang CW; Wang SJ; Huang WS; Kai JJ
    Appl Radiat Isot; 2020 Jul; 161():109143. PubMed ID: 32250842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a monte carlo study.
    Jung JY; Yoon DK; Barraclough B; Lee HC; Suh TS; Lu B
    Oncotarget; 2017 Jun; 8(24):39774-39781. PubMed ID: 28427153
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.
    Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G
    Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluating optimal quality assurance and quality control conditions of activation measurements at the accelerator-based boron neutron capture therapy system employing a lithium target.
    Suzuki S; Yagihashi T; Nitta K; Yamanaka M; Sato N; Gotoh S; Sugimoto S; Shiba S; Nagata H; Tanaka H
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38744248
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Radiation shielding evaluation of the BNCT treatment room at THOR: a TORT-coupled MCNP Monte Carlo simulation study.
    Chen AY; Liu YW; Sheu RJ
    Appl Radiat Isot; 2008 Jan; 66(1):28-38. PubMed ID: 17825572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. First optical observation of
    Nohtomi A; Maeda H; Sakamoto N; Wakabayashi G; Takata T; Sakurai Y
    Radiol Phys Technol; 2022 Mar; 15(1):37-44. PubMed ID: 34841495
    [No Abstract]   [Full Text] [Related]  

  • 55. Measurement of spatial distribution of neutrons and gamma rays for BNCT using multi-imaging plate system.
    Tanaka K; Sakurai Y; Tanaka H; Kajimoto T; Takata T; Takada J; Endo S
    Appl Radiat Isot; 2015 Dec; 106():125-8. PubMed ID: 26278346
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dependence of neutrons generated by
    Nakamura S; Igaki H; Okamoto H; Wakita A; Ito M; Imamichi S; Nishioka S; Iijima K; Nakayama H; Takemori M; Kobayashi K; Abe Y; Okuma K; Takahashi K; Inaba K; Murakami N; Nakayama Y; Nishio T; Masutani M; Itami J
    Phys Med; 2019 Feb; 58():121-130. PubMed ID: 30824143
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microdosimetric quantities of an accelerator-based neutron source used for boron neutron capture therapy measured using a gas-filled proportional counter.
    Hu N; Tanaka H; Takata T; Okazaki K; Uchida R; Sakurai Y
    J Radiat Res; 2020 Mar; 61(2):214-220. PubMed ID: 32030430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preliminary evaluations of the undesirable patient dose from a BNCT treatment at the ENEA-TAPIRO reactor.
    Ferrari P; Gualdrini G; Nava E; Burn KW
    Radiat Prot Dosimetry; 2007; 126(1-4):636-9. PubMed ID: 17704505
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new approach to dose estimation and in-phantom figure of merit measurement in BNCT by using artificial neural networks.
    Ahangari R; Afarideh H
    Australas Phys Eng Sci Med; 2011 Dec; 34(4):467-79. PubMed ID: 22042720
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.