BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32310104)

  • 1. Multiscale design of artificial bones with biomimetic elastic microstructures.
    Colabella L; Cisilino A; Fachinotti V; Capiel C; Kowalczyk P
    J Mech Behav Biomed Mater; 2020 Aug; 108():103748. PubMed ID: 32310104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and assessment of the biomimetic capabilities of a Voronoi-based cancellous microstructure.
    Frayssinet E; Colabella L; Cisilino AP
    J Mech Behav Biomed Mater; 2022 Jun; 130():105186. PubMed ID: 35405520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and μ-CT structural studies.
    Gómez González S; Valera Jiménez JF; Cabestany Bastida G; Vlad MD; López López J; Fernández Aguado E
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110404. PubMed ID: 31923939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimetization of the elastic properties of cancellous bone via a parameterized cellular material.
    Colabella L; Cisilino AP; Häiat G; Kowalczyk P
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1485-1502. PubMed ID: 28374083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells.
    Kowalczyk P
    J Biomech; 2003 Jul; 36(7):961-72. PubMed ID: 12757805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor.
    Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK
    J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone.
    Kadir MR; Syahrom A; Ochsner A
    Med Biol Eng Comput; 2010 May; 48(5):497-505. PubMed ID: 20224954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.
    Maquer G; Musy SN; Wandel J; Gross T; Zysset PK
    J Bone Miner Res; 2015 Jun; 30(6):1000-8. PubMed ID: 25529534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relating mechanical properties of vertebral trabecular bones to osteoporosis.
    Cesar R; Bravo-Castillero J; Ramos RR; Pereira CAM; Zanin H; Rollo JMDA
    Comput Methods Biomech Biomed Engin; 2020 Feb; 23(2):54-68. PubMed ID: 31813291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modelling of cancellous bone damage using an orthotropic failure criterion and tissue elastic properties as a function of the mineral content and microporosity.
    Megías R; Vercher-Martínez A; Belda R; Peris JL; Larrainzar-Garijo R; Giner E; Fuenmayor FJ
    Comput Methods Programs Biomed; 2022 Jun; 219():106764. PubMed ID: 35366593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of failure in cancellous bone using extended finite element method.
    Salem M; Westover L; Adeeb S; Duke K
    Proc Inst Mech Eng H; 2020 Sep; 234(9):988-999. PubMed ID: 32605523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictions of the elastic modulus of trabecular bone in the femoral head and the intertrochanter: a solitary wave-based approach.
    Yoon S; Schiffer A; Jang IG; Lee S; Kim TY
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1733-1749. PubMed ID: 34110537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.
    Barkaoui A; Tlili B; Vercher-Martínez A; Hambli R
    Comput Methods Programs Biomed; 2016 Oct; 134():69-78. PubMed ID: 27480733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and properties of 3D scaffolds for bone tissue engineering.
    Gómez S; Vlad MD; López J; Fernández E
    Acta Biomater; 2016 Sep; 42():341-350. PubMed ID: 27370904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.